| [1] |
Lu Z, Xian S H, Yao H L, et al. Influence of freeze-thaw cycles in the presence of a supplementary water supply on mechanical properties of compacted soil[J]. Cold Regions Science and Technology, 2019, 157: 42-52. DOI: 10.1016/j.coldregions.2018.09.009 .
|
| [2] |
Lu Z, She J B, Wu X W, et al. Cumulative strain characteristics of compacted soil under effect of freeze-thaw cycles with water supply[J]. Transportation Geotechnics, 2019, 21: 100291. DOI: 10.1016/j.trgeo.2019.100291 .
|
| [3] |
Zhao Y, Lu Z, Yao H L, et al. Experimental study of dynamic resilient modulus of subgrade soils under coupling of freeze-thaw cycles and dynamic load[J]. Journal of Central South University, 2020, 27(7): 2043-2053. DOI: 10.1007/s11771-020-4429-4 .
|
| [4] |
杨正宏, 李婷婷, 于龙. 低密度泡沫混凝土导热系数模型研究[J]. 建筑材料学报, 2020, 23(2): 322-327. DOI: 10.3969/j.issn.1007-9629.2020.02.013 .
|
| [5] |
Zhang J F, Yan Y, Hu Z H. Preparation and characterization of foamed concrete with Ti-extracted residues and red gypsum[J]. Construction and Building Materials, 2018, 171: 109-119. DOI: 10.1016/j.conbuildmat.2018.03.072 .
|
| [6] |
Samson G, Phelipot-Mardelé A, Lanos C. Thermal and mechanical properties of gypsum-cement foam concrete: effects of surfactant[J]. European Journal of Environmental and Civil Engineering, 2016, 21: 1502-1521. DOI: 10.1080/19648189.2016.1177601 .
|
| [7] |
Ouyang X P, Guo Y X, Qiu X Q. The feasibility of synthetic surfactant as an air entraining agent for the cement matrix[J]. Construction and Building Materials, 2008, 22(8): 1774-1779. DOI: 10.1016/j.conbuildmat.2007.05.002 .
|
| [8] |
Xiong Y L, Zhu Y, Chen C, et al. Effect of nano-alumina modified foaming agents on properties of foamed concrete[J]. Construction and Building Materials, 2021, 267: 121045. DOI: 10.1016/j.conbuildmat.2020.121045 .
|
| [9] |
Ranjani G S, Ramamurthy K. Behaviour of foam concrete under sulphate environments[J]. Cement and Concrete Composites, 2012, 34(7): 825-834. DOI: 10.1016/j.cemconcomp.2012.03.007 .
|
| [10] |
Kim Y T, Ahn J, Han W J, et al. Experimental evaluation of strength characteristics of stabilized dredged soil[J]. Journal of Materials in Civil Engineering, 2010, 22(5): 539-544. DOI: /10.1061/(ASCE)MT.1943-5533.0000052 .
|
| [11] |
Lim S K, Tan C S, Zhao X, et al. Strength and toughness of lightweight foamed concrete with different sand grading[J]. KSCE Journal of Civil Engineering, 2015, 19(7): 2191-2197. DOI: 10.1007/s12205-014-0097-y .
|
| [12] |
彭远胜, 欧孝夺, 姬凤玲. 铝土尾矿泡沫轻质土单轴抗压力学特性及唯象本构模型[J]. 应用基础与工程科学学报, 2023, 31(3): 675-689. DOI: 10.16058/j.issn.1005-0930.2023.03.012 .
|
| [13] |
欧孝夺, 彭远胜, 莫鹏, 等. 掺铝土尾矿泡沫轻质土的物理力学及水力特性研究[J]. 材料导报, 2020, 34(S1): 241-245.
|
| [14] |
彭远胜, 欧孝夺, 姬凤玲. 铝土尾矿泡沫轻质土的物理力学性能及细观特征[J]. 材料导报, 2022, 36(17): 124-129. DOI: 10.11896/cldb.21030274 .
|
| [15] |
Kearsley E P, Wainwright P J. The effect of high fly ash content on the compressive strength of foamed concrete[J]. Cement and Concrete Research, 2001, 31(1): 105-112. DOI: 10.1016/S0008-8846(00)00430-0 .
|
| [16] |
Jones M R, McCarthy A. Heat of hydration in foamed concrete: effect of mix constituents and plastic density[J]. Cement and Concrete Research, 2006, 36(6): 1032-1041. DOI: 10.1016/j.cemconres.2006.01.011 .
|
| [17] |
Lim S K, Tan C S, Li B, et al. Utilizing high volumes quarry wastes in the production of lightweight foamed concrete[J]. Construction and Building Materials, 2017, 151: 441-448. DOI: 10.1016/j.conbuildmat.2017.06.091 .
|
| [18] |
Jones M R, Ozlutas K, Zheng L. Stability and instability of foamed concrete[J]. Magazine of Concrete Research, 2016, 68: 542-549. DOI: 10.1680/MACR.15.00097 .
|
| [19] |
Kunhanandan Nambiar E K, Ramamurthy K. Influence of filler type on the properties of foam concrete[J]. Cement and Concrete Composites, 2006, 28(5): 475-480. DOI: 10.1016/j.cemconcomp.2005.12.001 .
|
| [20] |
Spyridopoulos M T, Simons S J R. Effect of natural organic matter on the stability of a liquid film between two colliding bubbles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 235(1/2/3): 25-34. DOI: 10.1016/j.colsurfa.2003.01.001 .
|
| [21] |
Raj A, Sathyan D, Mini K M. Physical and functional characteristics of foam concrete: a review[J]. Construction and Building Materials, 2019, 221: 787-799. DOI: 10.1016/j.conbuildmat.2019.06.052 .
|
| [22] |
Ramamurthy K, Kunhanandan Nambiar E K, Ranjani G S. A classification of studies on properties of foam concrete[J]. Cement and Concrete Composites, 2009, 31(6): 388-396. DOI: 10.1016/j.cemconcomp.2009.04.006 .
|
| [23] |
Kunhanandan Nambiar E K, Ramamurthy K. Models relating mixture composition to the density and strength of foam concrete using response surface methodology[J]. Cement and Concrete Composites, 2006, 28(9): 752-760. DOI: 10.1016/j.cemconcomp.2006.06.001 .
|
| [24] |
Horpibulsuk S, Suddeepong A, Chinkulkijniwat A, et al. Strength and compressibility of lightweight cemented clays[J]. Applied Clay Science, 2012, 69: 11-21. DOI: 10.1016/j.clay.2012.08.006 .
|
| [25] |
Cong M, Bing C. Properties of a foamed concrete with soil as filler[J]. Construction and Building Materials, 2015, 76: 61-69. DOI: 10.1016/j.conbuildmat.2014.11.066 .
|
| [26] |
赵文辉. 高速铁路泡沫轻质混凝土路基结构性能及施工技术研究[D]. 成都: 西南交通大学, 2018.
|
| [27] |
王才进, 蔡国军, 武猛, 等. 基于人工智能算法预测土体导热系数[J]. 岩土工程学报, 2022, 44(10): 1899-1907. DOI: 10.11779/CJGE202210016 .
|
| [28] |
张涛, 杨玉玲, 张家铭, 等. 基于相似性原则的橡胶颗粒-砂混合物热导率理论模型[J]. 岩土工程学报, 2024, 46(2): 436-444. DOI: 10.11779/CJGE20221333 .
|
| [29] |
徐洁, 胡海涛, 郑植. 压实度和含水率对非饱和土导热系数的影响[J]. 岩土工程学报, 2020, 42(S1): 244-248. DOI: 10.11779/CJGE2020S1048 .
|
| [30] |
李猛, 黄寅生, 张少波, 等. 泡沫混凝土的研究进展及展望[J]. 材料导报, 2016, 30(S1): 402-405.
|
| [31] |
陈兵, 胡华洁, 刘宁. 生土泡沫混凝土试验研究[J]. 建筑材料学报, 2015, 18(1): 1-6. DOI: 10.3969/j.issn.1007-9629.2015.01.001 .
|