[1] Lighthill J. Mathematical biofluiddynamics [M]. Philadelphia: Society for Industrial Mathematics, 1975.
[2] Dickinson M H, Gotz K G. Unsteady aerodynamic performance of model wings at low Reynolds numbers [J]. J Exp Biol, 1993, 174(1): 45-64.
[3] Jones K D, Dohring C M, Platzer M F. Wake structures behind plunging airfoils: a comparison of numerical and experimental results //AIAA, 1997. AIAA-1997-826.
[4] Tuncer I, Platzer M. Computational study of flapping airfoil aerodynamics [J]. Journal of Aircraft, 2000, 37(3): 514-520.
[5] Tuncer I, Platzer M. Thrust generation due to airfoil flapping . AIAA Journal, 1996, 34(2): 324-331.
[6] Combes S A, Daniel T L. Shape, flapping and flexion: wing and fin design for forward flight [J]. J Exp Biol, 2001, 204(12): 2073-2085.
[7] von Ellenrieder K D, Parker K, Soria J. Flow structures behind a heaving and pitching finite-span wing [J]. Journal of Fluid Mechanics, 2003, 490: 129-138.
[8] Parker K, von Ellenrieder K D, Soria J. Flow visualization of the effect of pitch amplitude changes on the vortical signatures behind a three-dimensional flapping airfoil //Proceedings of the SPIE, SPIE, 2003,5058: 331-343.
[9] Buchholz J H J, Smits A J. On the evolution of the wake structure produced by a low-aspect-ratio pitching panel [J]. Journal of Fluid Mechanics, 2006, 546: 433-443.
[10] Buchholz J H J, Smits A J. The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel [J]. Journal of Fluid Mechanics, 2008, 603: 331-365.
[11] Blondeaux P, Fornarelli F, Guglielmini L. Numerical experiments on flapping foils mimicking fish-like locomotion [J]. Physics of Fluids, 2005, 17(11): 113601-12.
[12] Dong H, Mittal R, Bozkurttas M, et al. Wake structure and performance of finite aspect-ratio flapping foils //AIAA, 1997. AIAA-2005-81.
[13] Dong H, Mittal R, Najjar F M. Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils [J]. Journal of Fluid Mechanics, 2006, 566: 309-343.
[14] Vest M, Katz J. Unsteady aerodynamic model of flapping wings [J]. AIAA Journal, 1996, 34(7):1240-1246.
[15] Smith M, Wilkin P, Williams M. The advantages of an unsteady panel method in modelling the aerodynamic forces on rigid flapping wings [J]. J Exp Biol, 1996, 199(5): 1073-1083.
[16] Willis D J, Israeli E R, Persson P, et al. A computational framework for fluid structure interaction in biologically inspired flapping flight //AIAA, 2007. AIAA-2007-3803.
[17] Zhu Q, Wolfgang M J, YUE D K P, et al. Three-dimensional flow structures and vorticity control in fish-like swimming [J]. Journal of Fluid Mechanics, 2002, 468: 1-28.
[18] Wolfgang M, Anderson J M, Grosenbaugh M A, et al. Near-body flow dynamics in swimming fish [J]. J Exp Biol, 1999, 202(17): 2303-2327.
[19] Liu P, Bose N. Hydrodynamic characteristics of a lunate shape oscillating propulsor [J]. Ocean Engineering, 1999, 26(6): 519-530.
[20] Katz J, Plotkin A. Low-Speed Aerodynamics [M]. 2nd edition. Cambridge: Cambridge University Press, 2001.
[21] 朱克勤.涡格法超收敛性研究及升力面脱体涡模拟 .合肥:中国科学技术大学,1988.
[22] Katz J. Calculation of the aerodynamic forces on automotive lifting surfaces [J]. Journal of Fluids Engineering, 1985, 107(4): 438-443.
[23] Daniel T L, Unsteady Aspects of Aquatic Locomotion [J]. Amer Zool, 1984,24(1): 121-134.
[24] Yu Y L, Tong B G, Ma H Y. An analytic approach to theoretical modeling of highly unsteady viscous flow excited by wing flapping in small insects [J]. Acta Mechanica Sinica, 2003, 19(6): 508-516.
[25] Yu Y L, Tong B G. A flow control mechanism in wing flapping with stroke asymmetry during insect forward flight [J]. Acta Mechanica Sinica, 2005, 21(3): 218-227.
|