[1] Giraud J. Cohomologie non abelienne [M]. Die Grundlehren der mathematischen Wissenschaften 179. Berlin/Heidelberg: Springer, 1971.
[2] Brylinski J-L. Loop spaces, characteristic class and geometric quantinization [M]. Progress in Mathematics 107. Boston: Birkhuser, 1993.
[3] Weil A. Sur les theoremes de de Rham [J]. Comm Math Helv, 1952, 26: 17- 43.
[4] Kostant B. Quantization and unitary representations //Lectures in Modern Analysis and Applications III, Lecture Notes in Mathematics 170. Berlin/Heidelberg: Springer, 1970: 87-208.
[5] Murray M. Bundle gerbes [J]. London Mathematical Society, 1996, 2(54): 403- 416.
[6] Bouwknegt P, Carey A, Mathai V, et al. Twisted K-theory and K-theory of bundle gerbes [J]. Commun Math Phys, 2002, 228: 17- 45.
[7] Minasian R, Moore G. K-theory and Ramond-Ramond charge [J]. J High Energy Phys, 1997 (11): 002.
[8] Witten E. D-branes and K-theory [J]. J High Energy Phys, 1998 (12): 019.
[9] Ho ava P. Type-IIA D-branes, K-theory and matrix theory [J]. Adv Theor Math Phys, 1998 (2): 1373-1404.
[10] Olsena K, Szabo R. Constructing D-branes from K-theory [J]. Adv Theor Math Phys, 1999, 3: 889-1025.
[11] Freed D, Witten E. Anomalies in string theory with D-branes . arXiv: hep-th/9907189v2, 2000-03-06 . http://arxiv.org/PS cache/hep-th/pdf/9907/9907189v2.pdf.
[12] Dixmier J, Douady A. Champs continus d’espaces hilbertiens et de C*-algébres [J]. Bull Soc Math France, 1963, 91: 227-284.
[13] Maldacena J, Moore G, Seiberg N. D-brane instantons and K-theory charges [J]. J High Energy Phys, 2001 (11): 062.
[14] Freed D, Hopkins M, Teleman C. Twisted equivariant K-theory with complex coefficients . arXiv: math/0206257v4, 2006- 07-23 . http://arxiv.org/PS cache/math/pdf/0206/0206257v4.pdf.
[15] Alekseev A, Schomerus V. Quantum moduli spaces of flat connections . arXiv: q-alg/9612037, 1996-12-31 . http://arxiv.org/PS cache/q-alg/pdf/9612/9612037v1.pdf.
[16] Mathai V, Stevenson D. Chern character in twisted K-theory: equivariant and holomorphic cases [J]. Commun Math Phys, 2003, 236:161-186.
[17] Breen L. On the classification of 2-gerbes and 2-stacks [M]. Astérisque 225. Paris: Société Mathématique de France, 1994.
[18] Brylinski J-L, McLaughlin D. The geometry of degree-four characteristic classes and of line bundles on loop spaces. I [J]. Duke Math J, 1994, 75(3): 603-638.
[19] Brylinski J-L, McLaughlin D. A geometric construction of the first Pontryagin class // Quantum Topology in Ser. Knots Everything 3. River Edge, New Jersey: World Sci Publishing, 1993: 209-220.
[20] Carey A, Murray M, Wang B. Higher bundle gerbes and cohomology classes in gauge theory [J]. J Geom Phys, 1997, 21: 183-197.
[21] Stevenson D. Bundle 2-gerbes [J]. Proc London Math Soc, 2004, 88(2): 405- 435.
[22] Yang C N, Mills R. Conservation of isotopic spin and isotopic gauge invariance [J]. Physical Review, 1954, 96(1): 191-195.
[23] Henneaux M, Teitelboim C. p-form electrodynamics [J]. Foundations of Physics, 1986, 16(7): 593-617.
[24] Hitchin N. What is a gerbe? [J]. Notices of the AMS, 2003, 50(2): 218-219.
[25] Hitchin N. Lectures on special lagrangian submanifolds . arXiv: math/9907034, 1999- 07- 06 . http://arxiv.org/PS cache/math/pdf/9907/9907034v1.pdf.
[26] Ekstrand C. k-gerbes, line bundles and anomalies [J]. J High Energy Phys, 2000 (10): 038.
[27] Gomi K. Central extensions of gauge transformation groups of higher abelian gerbes [J]. J Geom Phys, 2006, 56: 1767-1781.
[28] Gomi K. Projective unitary representations of smooth Deligne cohomology groups . arXiv: math/0510087, 2006. http://arxiv.org/PS cache/math/pdf/0510/0510087v1.pdf.
[29] Zunger Y. p-gerbes and extended objects in string theory . arXiv: hep-th/0002074, 2000- 02-10 . http://arxiv.org/PS cache/hep-th/pdf/0002/0002074v2.pdf.
[30] Keurentjes A. Classifying orientifolds by flat n-gerbes [J]. J High Energy Phys, 2001 (7): 010.
[31] Bachas C. Lectures on D-branes . arXiv: hepth/9806199, 1999-01-17 . http://arxiv.org/PS cache/hep-th/pdf/9806/9806199v2.pdf.
[32] Milnor J, Stasheff J. Characteristic classes [M]. Annals of Mathematical Studies 76. Princeton: Princeton University Express, 1974.19
[33] Husemler D, Echterhoff S, Fredenhagen S, et al . Basic bundle theory and K-cohomology invariants [M]. Lect Notes Phys 726. Berlin/Heidelberg: Springer, 2008.
[34] Atiyah M. K-theory [M]. 2nd ed. Advanced Book Classics, Addison-Wesley: 1989.
[35] Demazure M, Grothendieck A. Séminaire de Géométrie Algébrique du Bois Marie - 1962~1964 - Schémas en groupes (SGA 3) [M]. Lecture Notes in Mathematics 151 Berlin/Heidelberg: Springer, 1970.
[36] Artin M, Grothendieck A, Verdier J-L. Séminaire de Géométrie Algébrique du Bois Marie - 1963~1964 - Théorie des topos et cohomologie étale des schémas - (SGA 4) [M]. Lecture notes in Mathematics 269. Berlin/Heidelberg: Springer, 1972.
[37] MacLane S. Categories for the working mathematician [M]. 2nd ed. Grad Texts Math 5, Berlin/Heidelberg: Springer, 1971.
[38] Husemler D. Fibred Bundles [M]. 3rd ed. Grad Texts Math 20, Berlin/Heidelberg: Springer, 1994.
[39] Atiyah M, Segal G. Twisted K-theory . arXiv: math/0407054, 2005-10-31 . http://arxiv.org/PS cache/math/pdf/0407/0407054v2.pdf.
[40] Hartshorne R. Algebraic geometry [M]. Grad Texts Math 52, Berlin/Heidelberg: Springer, 1977.
[41] Vistoli A. Notes on grothendieck topologies, fibered categories and descent theory . arXiv:math/0412512v4, 2007- 05-24 .http://arxiv.org/PS cache/math/pdf/0412/0412512v4.pdf.
[42] Basu S. What is an Eilenberg-MacLane space? . Graduate Student Seminar Talks at State University of New York, Stony Brook, 2009 . http://www.math.sunysb.edu/ basu/notes/GSS4.pdf.
|