[1] Vapnik V N. An overview of statistical learning theory [J]. IEEE Transactions on Neural Networks, 1999, 10(5): 988-999.
[2] Tong S, Koller D. Support vector machine active learning with applications to text classification [J]. Journal of Machine Learning Researeh, 2002, 2: 45-66.
[3] Wu C H, Tzeng G H, Goo Y J, et al. A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy [J]. Expert Systems with Applications, 2007, 32(2): 397-408.
[4] Ahn H, Lee K, Kim K J. Global optimization of support vector machines using genetic algorithms for bankruptcy prediction [J]. Springer, Heidelberg Lecture Notes in Computer Science, 2006, 4234: 420-429.
[5] Lee M C. Using support vector machine with a hybrid feature selection method to the stock trend prediction [J]. Expert Systems with Applications, 2009, 36(8): 10896-10904.
[6] Akay M F. Support vector machines combined with feature selection for breast cancer diagnosis [J]. Expert Systems with Applications, 2009, 36(2): 3240-3247.
[7] Chang C Y, Chen S J, Tsai M F. Application of support-vector-machine-based method for feature selection and classification of thyroid nodules in ultrasound images [J]. Pattern Recognition, 2010, 43: 3494-3506.
[8] Hsu C W,Chang C C,Lin C J. A practical guide to SVM classification .2003. .http://www.csie.ntu.edu.tw/~cjlin.
[9] Chapelle O, Vapnik V, Bousquet O, et al. Choose multiple parameters for support vector machine [J]. Machine Learning, 2002, 46 (1): 131-159.
[10] Gold C, Sollich P. Model selection for support vector machine classification [J]. Neurocomputing, 2003, 55(1-2): 221-249.
[11] Cawley G C. Model selection for support vector machines via adaptive step-size tabu search //Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms. 2001: 434-437.
[12] Li S, Tan M. Tuning SVM parameters by using a hybrid CLPSO-BFGS algorithm [J]. Neurocomputing, 2010, 73: 2089-2096.
[13] Friedrichs F, Igel C. Evolutionary tunning of multiple svm parameters [J]. Neurocomputing, 2005, 64: 107-117.
[14] Huang C L, Wang C G. A GA-based feature selection and parameters optimization for support vector machines [J]. Expert Systems with Application, 2006, 31: 231-240.
[15] Cristianini N, Taylor J S. An introduction to support vector machine and other kernel-based learning methods [M]. Cambridge University Press, 2000: 42-43.
[16] Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms [J]. IEEE Transactions on System, Man and Cybernetics, 1994, 24(4): 656-667.
[17] Haralick R M, Shanmugan K, Dinstein I. Textural features for image classification [J]. IEEE Transactions on System, Man and Cybernetics, 1973, 3(6): 610-621.
|