[1] Park S C, Park M K, Kang M G. Super-resolution image reconstruction:a technical overview[J]. Signal Processing Magazine, IEEE, 2003, 20(3):21-36.
[2] Li X, Orchard M T. New edge-directed interpolation[J]. Image Processing, IEEE Transactions on, 2001, 10(10):1521-1527.
[3] Takeda H, Farsiu S, Milanfar P. Kernel regression for image processing and reconstruction[J]. Image Processing, IEEE Transactions on, 2007, 16(2):349-366.
[4] Chang H, Yeung D Y, Xiong Y. Super-resolution through neighbor embedding[C]//Computer Vision and Pattern Recognition, 2004. Proceedings of the 2004 IEEE Computer Society Conference on. IEEE, 2004, 1:275-282.
[5] Farsiu S, Robinson M D, Elad M, et al. Fast and robust multiframe super resolution[J]. Image processing, IEEE Transactions on, 2004, 13(10):1327-1344.
[6] Buades A, Coll B, Morel J M. A non-local algorithm for image denoising[C]//Computer Vision and Pattern Recognition, 2005. IEEE Computer Society Conference on. IEEE, 2005, 2:60-65.
[7] Freeman W T, Jones T R, Pasztor E C. Example-based super-resolution[J]. Computer Graphics and Applications, IEEE, 2002, 22(2):56-65.
[8] Yang J, Wright J, Huang T, et al. Image super-resolution as sparse representation of raw image patches[C]//Computer Vision and Pattern Recognition, 2008. IEEE Conference on. IEEE, 2008:1-8.
[9] Glasner D, Bagon S, Irani M. Super-resolution from a single image[C]//Computer Vision, 2009 IEEE 12th International Conference on. IEEE, 2009:349-356.
[10] Li J, Gong W, Li W, et al. Single-image super-resolution reconstruction based on global non-zero gradient penalty and non-local laplacian sparse coding[J]. Digital Signal Processing, 2014, 26:101-112.
[11] Lin Z, Shum H Y. Fundamental limits of reconstruction-based superresolution algorithms under local translation[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2004, 26(1):83-97.
[12] Protter M, Elad M, Takeda H, et al. Generalizing the nonlocal-means to super-resolution reconstruction[J]. Image Processing, IEEE Transactions on, 2009, 18(1):36-51.
[13] Yu J, Gao X, Tao D, et al. A unified learning framework for single image super-resolution[J]. Neural Networks and Learning Systems, IEEE Transactions on, 2014, 25(4):780-792.
[14] Nguyen N, Milanfar P, Golub G. A computationally efficient superresolution image reconstruction algorithm[J]. Image Processing, IEEE Transactions on, 2001, 10(4):573-583.
[15] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D:Nonlinear Phenomena, 1992, 60(1):259-268.
[16] Beck A, Teboulle M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems[J]. Image Processing, IEEE Transactions on, 2009, 18(11):2419-2434.
[17] Freeman W T, Pasztor E C, Carmichael O T. Learning low-level vision[J]. International Journal of Computer Vision, 2000, 40(1):25-47.
[18] Sun J, Zheng N N, Tao H, et al. Image hallucination with primal sketch priors[C]//Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on. IEEE, 2003, 2:729-736.
[19] Martin D, Fowlkes C, Tal D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Computer Vision, 2001. Proceedings Eighth IEEE International Conference on. IEEE, 2001, 2:416-423. |