[1] Bünzli J C G. Lanthanide luminescence for biomedical analyses and imaging[J]. Chem Rev, 2010, 110(5):2729-2756.
[2] Kramida A, Ralchenko Yu, Reader J, et al. NIST atomic spectra database (ver. 5.2)[DB/OL]. Gaithersburg:NIST, 2014[2016-04-10]. http://physics.nist.gov/asd.
[3] Jia L, Jing C, Zhou Z, et al. Studies of high-lying even-parity levels of Sm:energies and isotope shifts[J]. J Opt Soc Am B, 1993, 10(8):1317-1320.
[4] Jayasekharan T, Razvi M A N, Bhale G L. Observation of new even-parity states of Sm I by resonance ionization mass spectrometry[J]. J Opt Soc Am B, 1996, 13(4):641-648.
[5] Jayasekharan T, Razvi M A N, Bhale G L. Investigations of new high-lying even-parity energy levels of the samarium atom below its first ionization limit[J]. J Opt Soc Am B, 2000, 17(9):1607-1615.
[6] Pulhani A K, Shah M L, Dev Vas, et al. High-lying even-parity excited levels of atomic samarium[J]. J Opt Soc Am B, 2005, 22(5):1117-1122.
[7] Qin W J, Dai C J, Xiao Y, et al. Experi-mental study of highly excited even-parity bound states of the Sm atom[J]. Chin Phys B, 2009, 18(8):3384-3394.
[8] Pulhani A K, Shah M L, Gupta G P, et al. Measurement of total angular momentum values of high-lying even-parity atomic states of samarium by spectrally resolved laser-induced fluorescence technique[J]. Pramana J Phys, 2010, 75(6):1135-10139.
[9] Li M, Dai C J, Xie J. Even-parity states of the Sm atom with stepwise excitation[J]. Chin Phys B, 2011, 20(6):063204.
[10] Li M, Dai C J, Xie J. Photoionization spectra of even-parity states of Sm atom with multistepexcitation[J]. Quant Spectrosc Radiat Transfer, 2011, 112(5):793-799.
[11] Zhao Y H, Dai C J, Ye S W. Study on even-parity highly excited states of the Sm atom[J]. J Phys B, 2011, 44(19):195001.
[12] Shah M L, Sahoo A C, Pulhani A K, et al. Investigations of high-lying even-parity energy levels of atomic samarium using simultaneous observation of two-color laser-induced fluorescence and photoionization signals[J]. Eur Phys J D, 2014, 68:235.
[13] 杨騄,戴长健,赵红艳. 用光电离技术探测钐原子的奇宇称束缚激发态的光谱[J].物理学报,2013,62(5):053201.
[14] Zhou F Y, Qu Y Z, Li J G, et al. Multi-configuration Dirac-Hartree-Fock calculations of excitation energies, oscillator strengths, and hyperfine structure constants for low-lying levels of Sm I[J]. Phys Rev A, 2015, 92(5):052505.
[15] Porsev S G. Calculation of lifetimes of low-lying odd-parity levels of Sm[J]. Phys Rev A, 1997, 56(5):3535-3542.
[16] Petit A. Fine structure parametric analysis of the f3ds2+f3d2s configurations in U I[J]. Eur Phys J D, 1999, 6(2):157-170.
[17] Stachowska E, Elantkowska M, Ruczkowski J. Reanalysis and semi-empirical predictions of the hyperfine structure of Eu I in the odd parity multi-configuration system[J]. Phys Scr, 2002, 65(3):237-247.
[18] Cowan R D. The theory of aomic structure and spectra[M]. Los Angeles:University of California Press, 1981.
[19] Kramide A. A version of Cowan code package adapted for personal computers[CP/OL].[2016-04-08]. http://das101.isan.troitsk.ru.
[20] Conway J G, Wybourne B G. Low-lying energy levels of lanthanide atoms and intermediate coupling[J]. Phys Rev, 1963, 130(6):2325-2332.
[21] Judd B R, Lindgren I. Theory of zeeman effect in the ground multiplets of rare-earth atoms[J]. Phys Rev, 1961, 122(6):1802-1812.
[22] Carlier P A, Blaise J, Schweighofer M G.Étude des configurations impaires 4f66s6p et 4f55d6s2 de Sm I[J]. J Phys (Paris), 1968, 29(8/9):729-738.
[23] 赵红艳. Sm原子束缚态和自电离态的光谱及其特征.天津:天津理工大学,2011. |