[1] 雷少刚, 卞正富. 西部干旱区煤炭开采环境影响研究[J]. 生态学报, 2014, 34(11): 2 837-2 843.
[2] 石青, 陆兆华, 梁震, 等. 神东矿区生态环境脆弱性评估[J]. 中国水土保持, 2007(8): 24-26.
[3] 肖良. 神东矿区开采沉陷主控因素及GA-WNN下沉系数预计模型研究[D]. 西安: 西安科技大学, 2011.
[4] 李慧平. 神东矿区厚基岩顶板强制放顶初探[J]. 陕西煤炭, 2005(2): 33-34.
[5] Qu Z J, Cheng H, Yu Y J, et al. The effect of coal mine subsidence on the surface to landscape of vegetation [J]. Journal of Ecology, 2006, 30(3):414-420.
[6] 陈士超, 左合君, 胡春元, 等. 神东矿区活鸡兔采煤塌陷区土壤肥力特征研究[J]. 内蒙古大学学报(自然科学版), 2009, 30(2): 115-120.
[7] Belay A, Claassens A S, Wehner F C. Effect of direct nitrogen and potassium and residual phosph orus fertilizers on soil chemical properties, microbial components and maize yield under long-term crop rotation [J]. Biology and Fertility of Soils, 2002, 35(6): 420-427.
[8] Cai Z C, Qin S W. Dynamics of crop yields and soil organic carbon in a long-term fertilization experiment in the Huang-Huai-Hai Plain of China [J]. Geoderma, 2006, 136(3/4): 708-715.
[9] Diacono M, Montemurro F. Long-term effects of organic amendments on soil fertility [J]. Agronomy for Sustainable Development, 2010, 30(2): 401-422.
[10] Mallarino A P, Borges R. Phosphorus and potassium distribution in soil following long-term deep-band fertilization in different tillage systems [J]. Soil Science Society of America Journal, 2006, 70(20): 702-707.
[11] Pernes-Debuyers A, Tessier D. Soil physical properties affected by long-term fertilization [J]. European Journal of Soil Science, 2004, 55(3): 505-512.
[12] 张发旺, 赵红梅, 宋亚新, 等. 神府东胜矿区采煤塌陷对水环境影响效应研究[J]. 地球学报, 2007, 28(6): 521-527.
[13] 王健, 高永, 魏江生, 等. 采煤塌陷对风沙区土壤理化性质影响的研究[J]. 水土保持学报, 2006, 20(5): 52-55.
[14] 赵国平, 封斌, 徐连秀, 等. 半干旱风沙区采煤塌陷对植被群落变化影响研究[J]. 西北林学院学报, 2010, 25(1): 52-56.
[15] 陈来红, 光华, 董红丽, 等. 准格尔露天矿区复垦对土壤细菌多样性的影响研究[J]. 干旱区资源与环境, 2012, 26(2): 119-125.
[16] 樊文华, 白中科, 李慧峰, 等. 不同复垦模式及复垦年限对土壤微生物的影响[J]. 农业工程学报, 2011, 27(2): 330-336.
[17] Garbeva P, Veen, Jorge J A, et al. Microbial diversity in soil: selection of the microbial populations by plant and soil type and implications for soil suppressiveness [J]. Annual Review of Phytopathology, 2004, 42(1): 243-270.
[18] Powlson D S, Brookes P C, Christensen B T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation [J]. Soil Biology & Biochemistry, 1987, 19(2):159-164.
[19] 俞慎, 李勇, 王俊华, 等. 土壤微生物生物量作为红壤质量生物指标的探讨[J]. 土壤学报, 1999, 36(3): 413-422.
[20] 胡曰利, 吴晓芙. 土壤微生物生物量作为土壤质量生物指标的研究[J]. 中南林学院学报, 2002, 22(3): 51-53.
[21] 周丽霞, 丁明懋. 土壤微生物学特性对土壤健康的指示作用[J]. 生物多样性, 2007, 15(2): 162-171.
[22] Cao X. Regulating mine land reclamation in developing countries: the case of China [J]. Land Use Policy, 2007, 24(2): 472-483.
[23] He X, Su Y, Liang Y, et al. Land reclamation and short-term cultivation change soil microbial communities and bacterial metabolic profiles [J]. Journal of the Science of Food and Agriculture, 2012, 92(5): 1 103-1 111.
[24] 林先贵, 胡君利. 土壤微生物多样性的科学内涵及其生态服务功能[J]. 土壤学报, 2008, 45(5): 892-900.
[25] 胡振琪, 王新静, 贺安民. 风积沙区采煤沉陷地裂缝分布特征与发生发育规律[J]. 煤炭学报, 2014, 39(1): 11-18.
[26] 徐友宁, 何芳, 武自生, 等. 神东矿区开采沉陷及塌陷指数预测[J]. 中国煤炭, 2005, 12: 37-44.
[27] 李连娟. 榆神矿区矿山开发对水环境的影响及防治措施探讨[J]. 中国煤田地质, 2005, 17(5): 47-49.
[28] 雷少刚. 荒漠矿区关键环境要素的监测与采动影响规律研究[J]. 煤炭学报, 2010, 35(9): 1 587-1 588.
[29] 张延旭, 毕银丽, 陈书琳, 等. 半干旱风沙区采煤后裂缝发育对土壤水分的影响[J]. 环境科学与技术, 2015, 38(3): 11-14.
[30] 程林森, 雷少刚, 卞正富. 半干旱区煤炭开采对土壤含水量的影响[J]. 生态与农村环境学报, 2016, 32(2): 219-223.
[31] 台晓丽, 胡振琪, 陈超. 西部风沙区不同采煤沉陷区位土壤水分中子仪监测[J]. 农业工程学报, 2016, 32(15): 225-231.
[32] 王琦, 全占军, 韩煜, 等. 采煤塌陷对风沙区土壤性质的影响[J]. 中国水土保持科学, 2013, 11(6): 110-118.
[33] 魏江生, 贺晓, 胡春元, 等. 干旱半干旱地区采煤塌陷对沙质土壤水分特性的影响[J]. 干旱区资源与环境, 2006, 20(5): 84-88.
[34] 赵国平, 毕银丽, 杨伟, 等. 神府煤田风沙区采煤塌陷对粒度成分特征的影响[J]. 中国沙漠, 2015, 35(6): 1 461-1 466.
[35] 王健, 高永, 魏江生, 等. 采煤塌陷对风沙区土壤理化性质影响的研究[J]. 水土保持学报, 2006, 20(5): 53-55.
[36] 邱现奎, 董元杰, 万勇善, 等. 不同施肥处理对土壤养分含量及土壤酶活性的影响[J].土壤,2010, 42(2): 249-255.
[37] 刘建新. 不同农田土壤酶活性与土壤养分相关关系研究[J]. 土壤通报, 2004, 35(4): 523-525.
[38] 张发旺, 侯新伟, 韩占涛, 等. 采煤塌陷对土壤质量的影响效应及保护技术[J]. 地理与地理信息科学, 2003, 19(3): 67-70.
[39] 张丽娟, 王海邻, 胡斌, 等. 煤矿塌陷区土壤酶活性与养分分布及相关研究:以焦作韩王庄矿塌陷区为例[J]. 环境科学与管理, 2007, 32(1): 126-129.
[40] 郑丹, 李卫红, 陈亚鹏, 等. 干旱区地下水与天然植被关系研究综述[J]. 资源科学, 2005, 27 (4): 160-167.
[41] 杨选民, 丁长印. 神府东胜矿区生态环境问题及对策[J]. 煤矿环境保护, 2000, 14(1): 69-72.
[42] Bian Z F, Lei S G, Inyang H, et al. Integrated method of RS and GPR for monitoring the changes in soil moisture and ground water environment due to underground coal mining [J]. Environmental Geology, 2009, 57(1): 131-142.
[43] 卞正富, 雷少刚, 刘辉, 等. 风积沙区超大工作面开采生态环境破坏过程与恢复对策[J]. 采矿与安全工程学报, 2016, 33(2): 305-310.
[44] 齐瑞娟, 李召虎, 张明才. 水分处理对免耕农田土壤微生物活性和土壤酶的影响[EB/OL]. 北京: 中国科技论文在线 (2013-04-17)[2016-09-20].http://www.paper.edu.cn/releasepaper/content/201304-359.
[45] David L, Luc de V. Microbial species diversity, community dynamics, and metabolite kinetics of water kefir fermentation [J]. Applied and Environmental Microbiology, 2014, 80(8): 2 564-2 572.
[46] Julia G, Lukas Y W, Hauke H, et al. Evaluating T-RFLP protocols to sensitively analyze the genetic diversity and community changes of soil alkane degrading bacteria [J]. European Journal of Soil Biology, 2014, 65: 107-113.
[47] Thorsten K, José L S, Sa'via G, et al. Analysis of microbial community structure and composition in leachates from a young landfill by 454 pyrosequencing [J]. Applied Microbiology and Biotechnology, 2015, 99(13): 5 657-5 668.
[48] Trivedi P, He Z, van Nostrand J D, et al. Huanglongbing alters the structure and functional diversity of microbial communities associated with citrus rhizosphere [J]. Isme Journal, 2012, 6(2): 363-383.
[49] 张玉秀, 柴团耀. 废水生物处理过程中污泥的微生物种群结构和PAHs降解菌研究进展[J]. 中国科学院大学学报, 2016, 33(1): 1-8.
[50] Theron J, Cloete T E. Molecular techniques for determining microbial diversity and community structure in natural environments [J]. Critical Reviews in Microbiology, 2000, 26(1): 37-57.
[51] Claesson M, O'Sullivan O, Wang Q, et al. Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine [J]. Plos One, 2009, 4(8): 1-15.
[52] Ye L, Zhang T. Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing [J]. Applied Microbiology and Biotechnology, 2013, 97(6): 2 681-2 690.
[53] Bibby K, Viau E, Peccia J. Pyrosequencing of the 16S rRNA gene to reveal bacterial pathogen diversity in biosolids [J]. Water Research, 2010, 44(14): 4 252-4 260.
[54] Peng M, Zi X, Wang Q. Bacterial community diversity of oil-contaminated soils assessed by high throughput sequencing of 16S rRNA genes [J]. International Journal of Environmental Research and Public Health, 2015, 12(10):12 002-12 015.
[55] 王瑾. 西部煤矿区开采扰动对根际微生态影响及微生物复垦效应[D]. 北京: 中国矿业大学(北京), 2016.
[56] 杜涛, 毕银丽, 邹慧, 等. 地表裂缝对沙柳根际微生物和酶活性的影响[J]. 煤炭学报, 2013, 38(12): 2 221-2 226.
[57] Drees K P, Neilson J W, Betancourt J L, et al. Bacterial community structure in the hyperarid core of the Atacama Desert, Chile [J]. Applied and Environmental Microbiology, 2006, 72(12):7 902-7 908.
[58] Neilson J W, Quade J, Ortiz M, et al. Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile [J]. Extremophiles, 2012, 16(3):553-566.
[59] Pointing S B, Chan Y, Lacap D C, et al. Highly specialized microbial diversity in hyper-arid polar desert [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(47):19 964-19 969.
[60] An S, Couteau C, Luo F, et al. Bacterial diversity of surface sand samples from the Gobi and Taklamaken deserts [J] Microbial Ecology, 2013, 66(4):850-860.
[61] Zhou J B, Xia H, Huang A V, et al. Microbial diversity and heterogeneity in sandy subsurface soils [J]. Applied and Environmental Microbiology, 2004, 70(3):1 723-1 734.
[62] Ruth J M, Alison J, Hester, et al. Explaining the variation in the soil microbial community: do vegetation composition and soil chemistry explain the same or different parts of the microbial variation?[J]. Plant Soil, 2012, 351(1):355-362.
[63] 张崇邦, 金则新, 李均敏. 浙江天台山不同林型土壤环境的微生物区系和细菌生理群的多样性[J]. 生物多样性, 2001, 9(4): 382-388.
[64] Li Y, Chen L, Wen H, et al. Pyrosequencing analysis of bacterial diversity revealed by a comparative study of soils from mining subsidence and reclamation areas [J]. Journal of Microbiology and Biotechnology, 2014, 24(3): 313-323.
[65] Acosta-Martinez V, Dowd S E, Sun Y, et al. Pyrosequencing analysis for characterization of soil bacterial populations as affected by an integrated livestockcotton production system [J]. Applied Soil Ecology, 2010, 45: 13-25.
[66] Wu F, Wang J T, Yang J, et al. Does arsenic play an important role in the soil microbial community around a typical arsenic mining area?[J]. Environmental Pollution, 2016, 213:949-956.
[67] Torres-Cortés G, Millán V, Fernández-González A J, et al. Molecular bacterial diversity of a forest soil under residue management regimes in subtropical Australia [J]. Microbiology Ecology, 2005, 55(1): 38-47.
[68] Van Bruggen A H C, Semenov A M. In search of biological indicators for soil health and disease suppression [J]. Applied Soil Ecology, 2000, 15(1):13-24.
[69] 胡振琪, 龙精华, 王新静. 论煤矿区生态环境的自修复、自然修复和人工修复[J]. 煤炭学报, 2014, 39(8): 1 751-1 757.
[70] 陈超, 胡振琪, 台晓丽, 等. 风积沙区土地生态损伤自修复能力评价[J]. 中国煤炭, 2015, 41(10): 124-128.
[71] 刘哲荣, 燕玲, 贺晓, 等. 采煤沉陷干扰下土壤理化性质的演变:以大柳塔矿采区为例[J]. 干旱区资源与环境, 2014, 28(11): 133-138.
[72] 王琦, 全占军, 韩煜, 等. 风沙区采煤塌陷不同恢复年限土壤理化性质变化[J]. 水土保持学报, 2014, 28(2): 118-126.
[73] 张锦瑞, 陈娟浓, 岳志新, 等. 采煤塌陷引起的地质环境问题及其治理[J]. 中国水土保持, 2007(4): 37-39. |