›› 2017, Vol. 34 ›› Issue (4): 401-412.DOI: 10.7523/j.issn.2095-6134.2017.04.001
XUE Shengguo1,2, LI Yubing1, GUO Ying1
Received:
2017-03-01
Revised:
2017-05-15
Online:
2017-07-15
CLC Number:
XUE Shengguo, LI Yubing, GUO Ying. Environmental impact of bauxite residue:a comprehensive review[J]. , 2017, 34(4): 401-412.
Add to citation manager EndNote|Ris|BibTeX
URL: http://journal.ucas.ac.cn/EN/10.7523/j.issn.2095-6134.2017.04.001
[1] 许国栋, 敖宏, 佘元冠. 可持续发展背景下世界铝工业发展现状、趋势及我国的对策[J]. 中国有色金属学报, 2012, 22(7): 2 040-2 051. [2] Power G, Gräfe M, Klauber C. Bauxite residue issues: I. Current management, disposal and storage practices[J]. Hydrometallurgy, 2011, 108(1/2): 33-45. [3] Xue S G, Kong X F, Zhu F, et al. Proposal for management and alkalinity transformation of bauxite residue in China[J]. Environmental Science and Pollution Research, 2016, 23(13): 12 822-12 834. [4] Fabri M, Bargain A, Pairaud I, et al. Cold-water coral ecosystems in Cassidaigne Canyon: an assessment of their environmental living conditions[J]. Deep-Sea Research PartⅡ, 2017,137:436-453. [5] Gomes H I, Mayes W M, Rogerson M, et al. Alkaline residues and the environment: a review of impacts, management practices and opportunities[J]. Journal of Cleaner Production, 2016, 112(4): 3 571-3 582. [6] Gelencsér A, Kováts N, Turóczi B, et al. The red mud accident in Ajka (Hungary): characterization and potential health effects of fugitive dust[J]. Environmental Science & Technology, 2011, 45(4): 1 608-1 615. [7] Vangelatos I, Angelopoulos G N, Boufounos D. Utilization of ferroalumina as raw material in the production of ordinary portland cement[J]. Journal of Hazardous Materials, 2009, 168(1): 473-478. [8] Liu W C, Yang J K, Xiao B. Application of Bayer red mud for iron recovery and building material production from alumosilicate residues[J]. Journal of Hazardous Materials, 2009, 161(1): 474-478. [9] Yang J K, Xiao B. Development of unsintered construction materials from red mud wastes produced in the sintering alumina process[J]. Construction and Building Materials, 2008, 22(12): 2 299-2 307. [10] Gupta V K, Gupta M, Sharma S. Process development for the removal of lead and chromium from aqueous solutions using red mud:an aluminium industry waste[J]. Water Research, 2001, 35(5): 1 125-1 134. [11] Wang S B, Ang H M, Tadé M O. Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes[J]. Chemosphere, 2008, 72(11): 1 621-1 635. [12] 康雅凝, 李华楠, 徐冰冰, 等. 酸活化赤泥催化臭氧氧化降解水中硝基苯的效能研究[J]. 环境科学, 2013, 34(5): 1 790-1 796. [13] Wang W W, Pranolo Y, Cheng C Y. Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA[J]. Separation and Purification Technology, 2013, 108(16): 96-102. [14] Agatzini-Leonardou S, Oustadakis P, Tsakiridis P E, et al. Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure[J]. Journal of Hazardous Materials, 2008, 157(2/3): 579-586. [15] Liu Z B, Li H. Metallurgical process for valuable elements recovery from red mud:a review[J]. Hydrometallurgy, 2015, 155: 29-43. [16] Liu W C, Chen X Q, Li W X, et al. Environmental assessment, management and utilization of red mud in China[J]. Journal of Cleaner Production, 2014, 84(1): 606-610. [17] Klauber C, Gräfe M, Power G. Bauxite residue issues: Ⅱ. options for residue utilization[J]. Hydrometallurgy, 2011, 108(1/2): 11-32. [18] Xue S G, Zhu F, Kong X F, et al. A review of the characterization and revegetation of bauxite residues (red mud)[J]. Environmental Science and Pollution Research, 2016, 23(2): 1 120-1 132. [19] Ruyters S, Mertens J, Vassilieva E, et al. The red mud accident in Ajka (Hungary): plant toxicity and trace metal bioavailability in red mud contaminated soil[J]. Environmental Science & Technology, 2011, 45(4): 1 616-1 622. [20] Uzinger N, Anton Á D, Ötvös K, et al. Results of the clean-up operation to reduce pollution on flooded agricultural fields after the red mud spill in Hungary[J]. Environmental Science and Pollution Research, 2015, 22(13): 9 849-9 857. [21] Sarmiento A M, Olías M, Nieto J M, et al. Natural attenuation processes in two water reservoirs receiving acid mine drainage[J]. Science of The Total Environment, 2009, 407(6): 2 051-2 062. [22] Asta M P, Ayora C, Acero P, et al. Field rates for natural attenuation of arsenic in Tinto Santa Rosa acid mine drainage (SW Spain)[J]. J Hazard Mater, 2010, 177(1-3): 1 102-1 111. [23] Hind A R, Bhargava S K, Grocott S C. The surface chemistry of Bayer process solids: a review[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 146(1-3): 359-374. [24] Kong X F, Li M, Xue S G, et al. Acid transformation of bauxite residue: conversion of its alkaline characteristics[J]. Journal of Hazardous Materials, 2017, 324: 382-390. [25] Zhu X, Li W, Guan X M. An active dealkalization of red mud with roasting and water leaching[J]. Journal of Hazardous Materials, 2015, 286: 85-91. [26] 黄玲, 李义伟, 薛生国, 等. 氧化铝赤泥堆场盐分组成变化[J]. 中国有色金属学报, 2016, 26(11): 2 433-2 439. [27] Gräfe M, Power G, Klauber C. Bauxite residue issues: Ⅲ. Alkalinity and associated chemistry[J]. Hydrometallurgy, 2011, 108(1/2): 60-79. [28] Gräfe M, Klauber C. Bauxite residue issues: IV. Old obstacles and new pathways for in situ residue bioremediation[J]. Hydrometallurgy, 2011, 108(1/2): 46-59. [29] Zhu J K. Regulation of ion homeostasis under salt stress Jian-Kang Zhu[J]. Current Opinion in Plant Biology, 2003, 6(5): 441-445. [30] Nguyen Q D, Boger D V. Application of rheology to solving tailings disposal problems[J]. International Journal of Mineral Processing, 1998, 54(3/4): 217-333. [31] Zhu F, Liao J X, Xue S G, et al. Evaluation of aggregate microstructures following natural regeneration in bauxite residue as characterized by synchrotron-based X-ray micro-computed tomography[J]. Science of The Total Environment, 2016, 573: 155-163. [32] Nikraz H R, Bodley A J, Cooling D J, et al. Comparison of physical properties between treated and untreated bauxite residue mud[J]. Journal of Materials in Civil Engineering, 2007, 19(1): 2-9. [33] Rubinos D A, Barral M T. Fractionation and mobility of metals in bauxite red mud[J]. Environmental Science and Pollution Research, 2013, 20(11): 7 787-7 802. [34] Olszewska J P, Meharg A A, Heal K V, et al. Assessing the legacy of red mud pollution in a shallow freshwater lake: Arsenic accumulation and speciation in Macrophytes[J]. Environmental Science & Technology, 2016, 50(17): 9 044-9 052. [35] Rattner B A, McKernan M A, Eisenreich K M, et al. Toxicity and hazard of vanadium to Mallard Ducks (Anasplatyrhynchos) and Canada Geese (Brantacanadensis)[J]. Journal of Toxicology & Environmental Health Part A, 2006, 69(3/4): 331-351. [36] Kinnarinen T, Holliday L, Häkkinen A. Dissolution of sodium, aluminum and caustic compounds from bauxite residues[J]. Minerals Engineering, 2015, 79: 143-151. [37] Pagano G, Meriç S, De Biase A, et al. Toxicity of bauxite manufacturing by-products in Sea Urchin Embryos[J]. Ecotoxicology and Environmental Safety, 2002, 51(1): 28-34. [38] Howe P L, Clark M W, Reichelt-Brushett A, et al. Toxicity of raw and neutralized bauxite refinery residue liquors to the freshwater cladoceran Ceriodaphnia dubia and the marine amphipod Paracalliope australis[J]. Environmental Toxicology and Chemistr, 2011, 30(12): 2 817-2 824. [39] Fabri M, Pedel L, Beuck L, et al. Megafauna of vulnerable marine ecosystems in French mediterranean submarine canyons: spatial distribution and anthropogenic impacts[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2014, 104(104): 184-207. [40] Dauvin J. Towards an impact assessment of bauxite red mud waste on the knowledge of the structure and functions of bathyal ecosystems: the example of the Cassidaigne canyon (north-western Mediterranean Sea)[J]. Marine Pollution Bulletin, 2010, 60(2): 197-206. [41] Fontanier C, Fabri M C, Buscail R, et al. Deep-sea foraminifera from the Cassidaigne Canyon (NW Mediterranean): assessing the environmental impact of bauxite red mud disposal[J]. Marine Pollution Bulletin, 2012, 64(9): 1 895-1 910. [42] Czövek D, Novák Z, Somlai C, et al. Respiratory consequences of red sludge dust inhalation in rats[J]. Toxicology Letters, 2012, 209(2): 113-120. [43] Fritschi L, Klerk N D, Sim M, et al. Respiratory morbidity and exposure to bauxite, alumina and caustic mist in alumina refineries[J]. Journal of Occupational Health, 2001, 45(5): 231-237. [44] Pascucci S, Belviso C, Cavalli R M, et al. Using imaging spectroscopy to map red mud dust waste: the podgorica aluminum complex case study[J]. Remote Sensing of Environment, 2012, 123(3): 139-154. [45] Czop M, Motyka J, Sracek O, et al. Geochemistry of the hyperalkaline Gorka Pit Lake (pH>13) in the Chrzanow region, Southern Poland[J]. Water, Air, & Soil Pollution, 2011, 214(1-4): 423-434. [46] Sc D, Pas M, Pan I. Impact of landfilling of red mud waste on local environment: the case of Górka[J]. Gospodarka Surowcami Mineralnymi, 2015, 31(2):137-156. [47] Pontikes Y, Angelopoulos G N. Bauxite residue in cement and cementitious applications: current status and a possible way forward[J]. Resources, Conservation and Recycling, 2013, 73(4): 53-63. [48] Nuccetelli C, Pontikes Y, Leonardi F, et al. New perspectives and issues arising from the introduction of (NORM) residues in building materials: a critical assessment on the radiological behaviour[J]. Construction and Building Materials, 2015, 82: 323-331. [49] Akinci A, Artir R. Characterization of trace elements and radionuclides and their risk assessment in red mud[J]. Materials Characterization, 2008, 59(4): 417-421. [50] Somlai J, Jobbágy V, Kovács J, et al. Radiological aspects of the usability of red mud as building material additive[J]. Journal of Hazardous Materials, 2008, 150(3): 541-545. [51] Qin S, Wu B. Effect of self-glazing on reducing the radioactivity levels of red mud based ceramic materials[J]. Journal of Hazardous Materials, 2011, 198(2): 269-274. [52] Bertocchi A F, Ghiani M, Peretti R, et al. Red mud and fly ash for remediation of mine sites contaminated with As, Cd, Cu, Pb and Zn[J]. Journal of Hazardous Materials, 2006, 134(1-3): 112-119. [53] 吴川, 黄柳,薛生国, 等. 赤泥对砷污染的调控研究进展[J]. 环境化学, 2016(1): 141-149. [54] Yi L, Hong Y, Wang D, et al. Effect of red mud on the mobility of heavy metals in mining-contaminated soils[J]. Chinese Journal of Geochemistry, 2010, 29(2): 191-196. [55] 李华楠, 徐冰冰, 齐飞, 等. 响应面法优化赤泥负载Co催化剂制备及活性评价[J]. 环境科学, 2013, 34(11): 4 376-4 385. [56] Lehoux A P, Lockwood C L, Mayes W M, et al. Gypsum addition to soils contaminated by red mud: implications for aluminium, arsenic, molybdenum and vanadium solubility[J]. Environmental Geochemistry and Health, 2013, 35(5): 643-656. [57] Zhu F, Li X F, Xue S G, et al. Natural plant colonization improves the physical condition of bauxite residue over time[J]. Environ SciPollut Res Int, 2016, 23(22): 22 897-22 905. [58] Ujaczki É, Feigl V, Molnár M, et al. The potential application of red mud and soil mixture as additive to the surface layer of a landfill cover system[J]. Journal of Environmental Sciences, 2016, 44(6): 189-196. [59] Liu Y, Naidu R, Ming H. Red mud as an amendment for pollutants in solid and liquid phases[J]. Geoderma, 2011, 163(1/2): 1-12. [60] Brunori C, Cremisini C, Massanisso P, et al. Reuse of a treated red mud bauxite waste: studies on environmental compatibility[J]. Journal of Hazardous Materials, 2005, 117(1): 55-63. [61] Binnemans K, Jones P T, Blanpain B, et al. Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review[J]. Journal of Cleaner Production, 2015, 99: 17-38. [62] Abhilash, Sinha S, Sinha M K. Extraction of lanthanum and cerium from Indian red mud[J]. International Journal of Mineral Processing, 2014, 127(10): 70-73. [63] Qu Y, Lian B. Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10[J]. Bioresource Technology, 2013, 136(3): 16-23. [64] Vakilchap F, Mousavi S M, Shojaosadati S A. Role of Aspergillusniger in recovery enhancement of valuable metals from produced red mud in Bayer process[J]. Bioresource Technology, 2016, 218: 991-998. [65] Liu Z B, Li H X. Metallurgical process for valuable elements recovery from red mud: a review[J]. Hydrometallurgy, 2015, 155(1): 29-43. [66] Qu Y, Lian B, Mo B, et al. Bioleaching of heavy metals from red mud using Aspergillusniger[J]. Hydrometallurgy, 2013, 136(1): 71-77. [67] Borra C R, Pontikes Y, Binnemans K, et al. Leaching of rare earths from bauxite residue (red mud)[J]. Minerals Engineering, 2015, 76: 20-27. [68] Santini T C, Fey M V. Spontaneous vegetation encroachment upon bauxite residue (red mud) ss an indicator and facilitator of in situ remediation processes[J]. Environmental Science & Technology, 2013, 47(21): 12 089-12 096. [69] Courtney R, Mullen G, Harrington T. An evaluation of revegetation success on bauxite residue[J]. Restoration Ecology, 2009, 17(3): 350-358. [70] Wehr J B, Fulton I, Menzies N W. Revegetation strategies for bauxite refinery residue: a case study of Alcan Gove in Northern Territory, Australia[J]. Environmental Management, 2006, 37(3): 297-306. [71] Courtney R, Kirwan L. Gypsum amendment of alkaline bauxite residue: plant available aluminium and implications for grassland restoration[J]. Ecological Engineering, 2012, 42(5): 279-282. [72] Renforth P, Mayes W M, Jarvis A P, et al. Contaminant mobility and carbon sequestration downstream of the Ajka (Hungary) red mud spill: the effects of gypsum dosing[J]. Science of The Total Environmet, 2012, 421/422(3): 253-259. [73] Mayes W M, Batty L C, Younger P L, et al. Wetland treatment at extremes of pH: a review[J]. Science of The Total Environment, 2009, 407(13): 3 944-3 957. [74] Wong J W C, Ho G E. Effects of gypsum and sewage-sludge amendment on physical properties of fine bauxite refining residue[J]. Soil Science, 1991, 152(5): 326-332. [75] Courtney R G, Jordan S N, Harrington T. Physico-chemical changes in bauxite residue following application of spent mushroom compost and gypsum[J]. Land Degradation & Development, 2009, 20(5): 572-581. [76] Wong J W C, Ho G E. Sewage sludge as organic ameliorant for revegetation of fine bauxite refining residue[J]. Resources Conservation & Recycling, 1994, 11(1): 297-309. [77] Ma Y, Si C, Lin C. Capping hazardous red mud using acidic soil with an embedded layer of zeolite for plant growth[J]. Environmental Technology, 2014, 35(18): 2 314-2 321. [78] Wong J W C, Ho G E. Seawater neutralization of alkaline bauxite residue and implications for revegetation[J]. Journal of Environmental Quality, 1994, 11(1): 297-309. [79] Couperthwaite S J, Johnstone D W, Mullett M E, et al. Minimization of bauxite residue neutralization products using nanofiltered seawater[J]. Industrial & Engineering Chemistry Research, 2014, 53(10): 3 787-3 794. [80] 任杰, 刘继东, 陈娟, 等. 醋渣和糠醛渣对赤泥中金属稳定性的影响[J]. 环境科学研究, 2016,29(12):1 895-1 903. [81] Liang W, Couperthwaite S J, Kaur G, et al. Effect of strong acids on red mud structural and fluoride adsorption properties[J]. Journal of Colloid and Interface Science, 2014, 423(3): 158-165. [82] Johnston M, Clark M W, Mcmahon P, et al. Alkalinity conversion of bauxite refinery residues by neutralization[J]. Journal of Hazardous Materials, 2010, 182(1-3): 710-715. [83] Anton A, Réka'si M, Uzinger N, et al. Modelling the potential effects of the Hungarian red mud disaster on soil properties[J]. Water, Air, & Soil Pollution, 2012, 223(8): 5 175-5 188. [84] Winkler D. Collembolan response to red mud pollution in Western Hungary[J]. Applied Soil Ecology, 2014, 83: 219-229. [85] Richard S. Red mud spill at Vedanta plant[EB/OL]. (2014-04-20)[2017-02-20]http://londonminingnetwork.org/2011/04/red-mud-spill-at-vedanta-plant/. [86] VietNam News.Red mud spill damages rice fields in Bac Kan[EB/OL].(2014-07-26)[2017-02-20]. http://londonminingnetwork.org/2011/04/red-mud-spill-at-vedanta-plant/. [87] 刘倩倩. 中铝河南分公司第五赤泥库局部溃坝受灾村民遭封户外移[EB/OL].(2014-09-18)[2017-02-20]. http://henan.youth.cn/ywtx/201409/t20140918_5757004.htm. [88] 胡晓辉. 香江万基铝业赤泥库溃坝70余日受灾民众仍未获赔偿[EB/OL].(2016-10-26)[2017-02-20]. http://hn.cnr.cn/hngd/20161026/t20161026_523222570.shtml. [89] Lockwood C L, Mortimer R J G, Stewart D I, et al. Mobilisation of arsenic from bauxite residue (red mud) affected soils: Effect of pH and redox conditions[J]. Applied Geochemistry, 2014, 51(3): 268-277. [90] Lockwood C L, Stewart D I, Mortimer R J G, et al. Leaching of copper and nickel in soil-water systems contaminated by bauxite residue (red mud) from Ajka, Hungary: the importance of soil organic matter[J]. Environmental Science and Pollution Research, 2015, 22(14): 10 800-10 810. [91] Mayes W M, Jarvis A P, Burke I T, et al. Dispersal and attenuation of trace contaminants downstream of the Ajka bauxite residue (red mud) depository failure, Hungary[J]. Environmental Science & Technology, 2011, 45(12): 5 147-5 155. [92] Nagy A S, Szabó J, Vass I. Trace metal and metalloid levels in surface water of Marcal River before and after the Ajka red mud spill, Hungary[J]. Environmental Science and Pollution Research, 2013, 20(11): 7 603-7 614. [93] Klebercz O, Mayes W M, Anton A D, et al. Ecotoxicity of fluvial sediments downstream of the Ajka red mud spill, Hungary[J]. J Environ Monit, 2012, 14(8): 2 063-2 071. [94] Utasi A, Sebestyen V, Nemeth J, et al. Advanced environmental impact assessment quantitative method for red mud disposal facilities[J]. Environmental Engineering & Management Journal, 2014, 13(9): 2 295-2 300. [95] EPA. Aquatic life ambient freshwater quality criteria for copper2007[S/OL].(2001-02)[2017-02-20].https://nepis.epa.gov/Exe/ZyPDF.cgi/P1000PXC.PDF?Dockey=P1000PXC.PDF. [96] EPA. National recommended water quality criteria (aquatic life criteria table) 2012 [S/OL].[2017-02-20]. https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table. [97] EPA. National recommended water quality criteria: 2002[S/OL]. (2002)[2017-02-20]. [98] EU. European communities environmental objectives (surface waters) regulations 2009 [S/OL]. (2009)[2017-02-20]. http://www.epa.ie/wfdstatus/WFD_Regulations_SI_272_of_2009.pdf. [99] EU. European Communities environmental objectives (surface waters) (amendment) regulations 2012[S]. (2012)[2017-02-20]. http://www.housing.gov.ie/sites/default/files/migrated-files/en/Legislation/Environment/Water/FileDown Load,31051,en.pdf. [100] Mišík M, Burke I T, Reismüller M, et al. Red mud a byproduct of aluminum production contains soluble vanadium that causes genotoxic and cytotoxic effects in higher plants[J]. Science of The Total Environment, 2014, 493(5): 883-890. [101] Burke I T, Peacock C L, Lockwood C L, et al. Behavior of aluminum, arsenic, and vanadium during the neutralization of red mud leachate by HCl, gypsum, or seawater[J]. Environmental Science & Technology, 2013, 42(12): 6 527-6 535. [102] 管博, 于君宝, 陆兆华, 等. 黄河三角洲滨海湿地水盐胁迫对盐地碱蓬幼苗生长和抗氧化酶活性的影响[J]. 环境科学, 2011,32(8): 2 422-2 429. [103] Saha N, Kharbuli Z Y, Bhattacharjee A, et al. Effect of alkalinity (pH 10) on ureogenesis in the air-breathing walking catfish, Clariasbatrachus[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2002, 132(2): 353-364. [104] Mayes W M, Younger P L. Buffering of Alkaline steel slag leachate across a natural wetland[J]. Environmental Science & Technology, 2006, 40(4): 1 237-1 243. [105] Gundy S, Farkas G, Szekely G, et al. No short-term cytogenetic consequences of Hungarian red mud catastrophe[J]. Mutagenesis, 2012, 28(1): 1-5. |
[1] | TIAN Tao, WU Yujun, XUE Shengguo, HUANG Ling, JIANG Jun, ZHU Feng. Effects of gypsum amendment on salinity ion migration in bauxite residue [J]. , 2019, 36(4): 521-529. |
[2] | WANG Qiongli, YE Yuzhen, XUE Shengguo, JIANG Jun, ZHU Feng, TIAN Tao. Effects of ameliorants on aggregate stability of bauxite residue [J]. , 2019, 36(4): 530-536. |
[3] | HAN Fusong, WANG Cheng, XUE Shengguo, HUANG Nan, YE Yuzhen. Plant species diversity in bauxite residue disposal areas [J]. , 2017, 34(5): 551-557. |
[4] | CHEN Yawei, WANG Mingyu, LI Wei, WANG Huifang, WANG Shuping. Impact assessment and trend analysis of underground coal gasification on groundwater quality [J]. , 2015, 32(3): 309-316. |
[5] | LIU Tian-Xing, HU Dan. The Environmental Impact of Residential Building Construction in Beijing : 1949-2003——Assessing the Construction Materials’ Environmental Impact by LCA [J]. , 2006, 23(2): 231-241. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Journal of University of Chinese Academy of Sciences
Support by Beijing Magtech Co.ltd support@magtech.com.cn