[1] Chambers A, Nakicenovic N. World energy outlook[EB/OL]. Paris:International Energy Agency.(2008)[2017-10-11]. http://www.iea.org.
[2] Chau K T, Wong Y S, Chan C C. An overview of energy sources for electric vehicles[J]. Energy Conversion and Management, 1999, 40(10):1021-1039.
[3] Panchal S, Dincer I, Agelin-Chaab M, et al. Experimental and theoretical investigation of temperature distributions in a prismatic lithium-ion battery[J]. International Journal of Thermal Sciences, 2016, 99:204-212.
[4] Ritchie A, Howard W. Recent developments and likely advances in lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2):809-812.
[5] Abada S, Marlair G, Lecocq A, et al. Safety focused modeling of lithium-ion batteries:a review[J]. Journal of Power Sources, 2016, 306:178-192.
[6] Kuper C, Hoh M, Houchin-Miller G, et al. Thermal management of hybrid vehicle battery systems[C]//24th International Battery, Hybrid and Fuel Cell Electric Vehicle Conference and Exhibition (EVS-24):Stavanger, Norway:2009:1-10.
[7] Giuliano M R, Prasad A K, Advani S G. Experimental study of an air-cooled thermal management system for high capacity lithium-titanate batteries[J]. Journal of Power Sources, 2012, 216:345-352.
[8] Wang T, Tseng K J, Zhao J, et al. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies[J]. Applied Energy, 2014, 134:229-238.
[9] Rao Z, Huo Y, Liu X, et al. Experimental investigation of battery thermal management system for electric vehicle based on paraffin/copper foam[J]. Journal of the Energy Institute, 2015, 88(3):241-246.
[10] Javani N, Dincer I, Naterer G F, et al. Modeling of passive thermal management for electric vehicle battery packs with PCM between cells[J]. Applied Thermal Engineering, 2014, 73(1):307-316.
[11] 饶中浩, 汪双凤, 洪思慧, 等. 电动汽车动力电池热管理实验与数值分析[J]. 工程热物理学报, 2013, 34(6):1157-1160.
[12] Zhao R, Gu J, Liu J. An experimental study of heat pipe thermal management system with wet cooling method for lithium-ion batteries[J]. Journal of Power Sources, 2015, 273:1089-1097.
[13] Rao Z, Huo Y, Liu X. Experimental study of an OHP-cooled thermal management system for electric vehicle power battery[J]. Experimental Thermal and Fluid Science, 2014, 57:20-26.
[14] Pesaran A A. Battery thermal management in EV and HEVs:issues and solutions[J]. Battery Man, 2001,43(5):34-49.
[15] Tong W, Somasundaram K, Birgersson E, et al. Numerical investigation of water cooling for a lithium-ion bipolar battery pack[J]. International Journal of Thermal Sciences, 2015, 94:259-269.
[16] Zhao J, Rao Z, Li Y. Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery[J]. Energy Conversion and Management, 2015, 103:157-165.
[17] Hirano H, Tajima T, Hasegawa T, et al. Boiling liquid battery cooling for electric vehicle[C]//Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), 2014 IEEE Conference and Expo. IEEE, 2014:1-4.
[18] Nelson P, Dees D, Amine K, et al. Modeling thermal management of lithium-ion PNGV batteries[J]. Journal of Power Sources, 2002, 110(2):349-356.
[19] Bernardi D, Pawlikowski E, Newman J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1):5-12.
[20] Gu W B, Wang C Y. Thermal-electrochemical modeling of battery systems[J]. Journal of The Electrochemical Society, 2000, 147(8):2910-2922.
[21] Doyle M, Fuller T F, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6):1526-1533.
[22] Mohammadian S K, He Y L, Zhang Y. Internal cooling of a lithium-ion battery using electrolyte as coolant through microchannels embedded inside the electrodes[J]. Journal of Power Sources, 2015, 293:458-466. |