[1] Young M D, Backus S, Durfee C, et al. Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser[J]. Journal of Microscopy, 2013, 249(2):83-86.
[2] Novak O, Turcicova H, Smrz M, et al. Picosecond green and deep ultraviolet pulses generated by a high-power 100kHz thin-disk laser[J]. Optics Letters, 2016, 41(22):5210-5213.
[3] Peng R W, Guo L, Zhang X F, et al. 43W picosecond laser and second-harmonic generation experiment[J]. Optics Communications, 2009, 282(4):611-613.
[4] Li S, Li D, Zhao S, et al. 11MW peak power in doubly QML composite Nd:YVO4/Nd:YVO4/Nd:YVO4/KTP sub-nanosecond green laser with EO and Bi-GaAs[J]. Optics Express, 2016, 24(4):4022-4028.
[5] Kovalev A V, Polyakov V M, Mak A A, et al. Mode-locking in intracavity frequency doubled Nd:YVO4 Laser[C]//Clarkson W A, Shori R K. Solid State Lasers XXIV:Technology and Devices, Bellingham:Spie-Int Soc Optical Engineering, 2015:93421M.
[6] Tang W, Zhao S, Yang K, et al. Numerical simulation of subnanosecond single mode locking pulse generation in a doubly Q-switched and mode-locked green laser with EO and Cr4+:YAG[J]. Journal of the Optical Society of America B, 2015, 33(1):1-7.
[7] Wang W, Liu J, Chen F, et al. 532 nm picosecond pulse generated in a passively mode-locked Nd:YVO4 laser[J]. Chinese Optics Letters, 2009, 7(8):706-708.
[8] Pang Q S, Fu J, Chang L, et al. Laser diode end pumped intracavity frequency doubling semiconductor saturable absorber mirror passively mode-locked picosecond lasers[J]. Optics Communications, 2011, 284(20):4983-4985.
[9] Pang Q S, Chen M, Liu Z X, et al. LD end-pumped intracavity frequency doubling SESAM passively mode-locked picosecond lasers[J]. Laser Physics, 2011, 21(6):1031-1034.
[10] Cai W, Peng Q, Hou W, et al. Picosecond passively mode-locked laser of 532nm by reflective carbon nanotube[J]. Optics & Laser Technology, 2014, 58:194-196.
[11] Li Z H, Peng J Y, Yuan R X, et al. Compact and high repetition rate Kerr-lens mode-locked 532nm Nd:YVO4 laser[J]. Laser Physics, 2015, 25(11):115001.
[12] Li T, Zhao S Z, Zhuo Z, et al. Passively mode-locked YVO4/Nd:YVO4composite crystal green laser with a semiconductor saturable absorber mirror[J]. Laser Physics Letters, 2009, 6(1):30-33.
[13] Li L, Liu J, Liu M, et al. 532nm continuous wave mode-locked Nd:GdVO4 laser with SESAM[J]. Laser Physics Letters, 2009, 6(2):113-116.
[14] Liu B, Li Y, Jiang H L. Nd:LuVO4 as a true three-level laser[J]. Laser Physics Letters, 2011, 8(8):575-578.
[15] Maunier C, Doualan J L, Moncorge R, et al. Growth, spectroscopic characterization, and laser performance of Nd:LuVO4 a new infrared laser material that is suitable for diode pumping[J]. Journal of The Optical Society of America B-optical Physics, 2002, 19(8):1794-1800.
[16] Zhao S R, Zhang H J, Liu J H, et al. Growth of excellent-quality Nd:LuVO4 single crystal and laser properties[J]. Journal of Crystal Growth, 2005, 279(1/2):146-153.
[17] Nikogosyan D N. Lithium triborate (LBO):a review of its properties and applications[J]. Applied Physics A, 1994, 58(3):181-190.
[18] Mukhopadhyay P K, Alsous M B, Ranganathan K, et al. Analysis of laser-diode end-pumped intracavity frequency-doubled, passively Q-switched and mode-locked Nd:YVO4 laser[J]. Applied Physics B, 2004, 79(6):713-720.
[19] Keller U, Weingarten K J, Kartner F X, et al. Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(3):435-453.
[20] Keller U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950):831-838.
[21] Paschotta R. Encyclopedia of laser physics and technology[M]. Weinheim:Wiley-VCH, 2008:416-418.
[22] Takahashi K, Hayakawa T, Suyama T, et al. energy-band structure of (AlAs) (GaAs) superlattices[J]. Journal of Applied Physics, 1988, 63(5):1729-1732.
[23] Linsheng L, Su L, Wenxin W, et al. Study of electron spin relaxation time in GaAs (110) quantum wells[J]. Journal of Semiconductors, 2007, 28(6):856-859. |