[1] Goldberg L R, Johnson J A, Eber H W, et al. The international personality item pool and future of public-domain personality measures[J]. Journal of Research in Personality, 2006,40(1):84-96.
[2] Ortigosa A, Carro R M, Quiroga J I. Predicting user personality by mining social interactions in Facebook[J]. Journal of Computer and System Sciences, 2013,80(1):57-71.
[3] Wald R, Khoshgoftaar T M, Napolitano A, et al. Using Twitter content to predict psychopathy[C]//Proceedings of the 201211th International Conference(ICMLA) on Machine Learning and Applications. USA, 2012:394-401.
[4] Li L, Li A, Hao B, et al. Predicting active users' personality based on micro-blogging behaviors[J]. Plos One, 2014,9(1):e84997.
[5] Wald R, Khoshgoftaar T M, Sumner C. Machine prediction of personality from Facebook profiles[C]//Proceedings of the 2012 IEEE 13rd International Conference on Information Reuse and Integration. LasVegas, USA, 2012:109-115.
[6] Bachrach Y, Kosinski M, Graepel T, et al. Personality and patterns of Facebook usage[C]//Proceedings of the 3rd Annual ACM Web Science Conference. New York, USA, 2012:24-32.
[7] Iacobelli F, Gill A J, Nowson S, et al. Large scale personality classification of bloggers[C]//Fourth International Conference on Affective Computing & Intelligent Interaction. Memphis, USA,2011:568-577.
[8] Nowson S, Oberlander J. Identifying more bloggers:towards large scale personality classification of personal[C]//International Conference on Weblogs and Social. Colorado, USA, 2007:1-7.
[9] Caruana R. Multitask learning[J]. Machine Learning, 1997,28(1):41-75.
[10] Argyriou A, Evgeniou T, Pontil M. Convex multi-task feature learning[J]. Machine Learning, 2008,73(3):243-272.
[11] Ben-David S, Schuller-Borbely R. A notion of task relatedness yielding provable multiple-task learning guarantees[J]. Machine Learning, 2008, 73(3):273-287.
[12] Zhang Y, Yeung D Y. Multi-task learning using generalized t process[J]. Journal of Machine Learning Research Proceedings Track, 2010,9(1):964-971.
[13] Charuvaka A, Rangwala H. Classifying protein sequences using regularized multi-task learning[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2014,11(6):1087-1098.
[14] Zhang J, Ghahramani Z, Yang Y. Learning multiple related tasks latent independent component analysis[J]. Advances in Neural Information Systems, 2006,18:1585-1592.
[15] Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J]. Nature, 1996,381(6583):607-609.
[16] Mao X, Wu O, Hu W, et al. Nonlinear Classification via linear SVMs and multi-task learning[C]//International Conference on Conference on Information & Knowledge Management. Shanghai, China, 2014:1955-1958.
[17] 白朔天,袁莎,程莉,等. 多任务回归在社交媒体挖掘中的应用[J].哈尔滨工业大学学报, 2014, 46(9):100-110.
[18] Evgeniou T, Pontil M. Regularized multi-task learning[C]//Proceedings of Knowledge Discovery and Data Mining. Washington, USA, 2004:109-117.
[19] Yu S, Tresp V, Yu K. Robust Multi-task Learning with t-Processes[C]//Proceedings of the 24th International Conference on Machine learning. Madison, USA, 2007:1103-1110.
[20] Chen J, Zhou J, Ye J. Integrating low-rank and group-sparse structures for robust multi-task learning[C]//Proceedings of the 10th ACM SIGKDD international conference on Knowledge discovery and data mining. California, USA, 2011:42-50.
[21] Xu H, Leng C. Robust multi-task regression with grossly corrupted observations[C]//Proceedings of the 15th International Conference on Artificial Intelligence and Statistics (AISTATS). La Palma, Canary Islands, 2012:1341-1349.
[22] Gong P, Ye J, Zhang C. Robust multi-task feature learning[C]//Knowledge Discovery and Data Mining International Conference'12.Beijing, China, 2012(8):895-903.
[23] Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society, 2011,73(3):273-282.
[24] Ji S, Ye J. An accelerate gradient method for trace norm minimization[C]//Proceedings of the 26th Annual International Conference on Machine Learning. Montreal, Canada, 2009:457-464. |