[1] Alan G. Algorithmic graph theory[J]. Oberwolfach Reports, 1989, 3(1):379-460.
[2] Douglas B W. Introduction to graph theory[M]. 2nd ed. Upper Saddle River:Prentice hall, 2001.
[3] Robert S, Kevin W. Algorithms[M]. 4th ed. Boston:Addison-Wesley Professional, 2011.
[4] Santanu S R. Graph theory with algorithms and its applications:in applied science and technology[M]. India:Springer, 2013.
[5] Lorenzo B, Michele C, Giovanni R. A Branch-and-cut algorithm for the Equicut problem[J]. Mathematical Programming, 1997, 78(2):243-263.
[6] John E M. Branch and cut for the k-way Equipartition Problem[J]. Discrete Optimization, 2007, 4(1):87-102.
[7] Stefan E K, Franz R, Jens C. Solving graph Bisection problems with Semidefinite Programming[J]. INFORMS Journal on Computing, 2000, 12(3):177-191.
[8] Huang A, Zhu W. Connectedness of graphs and its application to connected matroids through covering-based rough sets[J]. Soft Computing, 2016, 20(5):1841-1851.
[9] Andrew B K, Jens L, Igor L M, et al. VLSI physical design:from Born graph partitioning to timing closure[M]. Hamburg:Springer, 2011.
[10] Maria C, Bernard R, Yori Z. Claw-free graphs with strongly perfect complements:fractional and integral version. part I. Basic graphs[J]. Discrete Applied Mathematics, 2011, 159(17):1971-1995.
[11] James A B. Graph theory and social networks:a technical comment on connectedness and connectivity[J]. Sociology, 1969, 3(2):215-232.
[12] Laszlo B. Some applications of graph contractions[J]. Journal of Graph Theory, 1977, 1(2):125-130.
[13] Edward F M. The shortest path through a maze[J]. In proceedings of the International Symposium on the Theory of Switching, 1959:285-292.
[14] Lee C Y. An algorithm for path connections and its applications[J]. IRE Transactions on Electronic Computers, 1961, 3(1):346-365.
[15] Thomas H C, Charles E L, Ronald L R, et al. Introduction to algorithms[M]. 3rd edition. Cambridge:MIT Press, 2001.
[16] Shimon E. Graph algorithms[M]. Cambridge and New York:Cambridge University Press, 2011.
[17] Pearson K. The problem of the random walk[J]. Nature, 1905, 72(1865):294.
[18] Kampen N G. Stochastic processes in physics and chemistry[M]. Revised and enlarged edition. Amsterdam/London/New York/Tokyo:Elsevier, 1992.
[19] Pierre D G. Scaling concepts in polymer physics[M]. Ithaca and London:Cornell University Press, 1979.
[20] Sriram V P, Steven S S. Computational discrete mathematics:combinatorics and graph theory with mathematica[M]. Cambridge:Cambridge University Press, 2009.
[21] Chung F. Spectral graph theory[M]. New York:American Mathematical Society, 1997.
[22] Michael W N. The Laplacian spectrum of graphs[D]. Manitoba:University of Manitoba, 2000.
[23] Li T Y. The Laguerre tteration in solving the symmetric tridiagonal eigenproblem, revisited[J]. SIAM Journal on Scientific Computing, 1994, 15(5):1145-1173. |