[1] Rubinstein M, Colby R H. Polymer physics[M]. Oxford, UK:Oxford University Press, 2003:102-104.
[2] Flory P J. Principles of polymer chemistry[M]. Ithaca, New York:Cornell University Press, 1953:29-66.
[3] Fetters L J, Hadjichristidis N, Lindner J S, et al. Molecular weight dependence of hydrodynamic and thermodynamic properties for well-defined linear polymers in solution[J]. J Phys Chem Ref Data, 1994, 23(4):619-640.
[4] Grest G S, Murat M. Structure of grafted polymeric brushes in solvents of varying quality:a molecular dynamics study[J]. Macromolecules, 1993, 26(12):3108-3117.
[5] Elliott I G, Kuhl T L, Faller R. Molecular simulation study of the structure of high density polymer brushes in good solvent[J]. Macromolecules, 2010, 43(21):9131-9138.
[6] Suo T, Whitmore M D. Self-consistent field theory of tethered polymers:one dimensional, three dimensional, strong stretching theories and the effects of excluded-volume-only interactions[J]. J Chem Phys, 2014, 141(20):204903.
[7] Edwards S F. The statistical mechanics of polymers with excluded volume[J]. Proc Phys Soc, 1965, 85:613-624.
[8] Suo T, Yan D. Theoretical study on tethered polymers with explicit grafting points in Θ-solvent[J]. J Chem Phys, 2011, 134(5):054901.
[9] Matsen M W. Self-consistent field theory and its applications[C]//Gompper G, Schick M. Soft Matter. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2007:7-11.
[10] Tang J, Zhang X, Yan D. Compression induced phase transition of nematic brush:a mean-field theory study[J]. J Chem Phys, 2015, 143(20):204903.
[11] Fu J, Zhang X, Miao B, et al. Light-responsive expansion-contraction of spherical nanoparticle grafted with azopolymers[J]. J Chem Phys, 2017, 146(16):164901.
[12] Xu G, Huang Z, Chen P, et al. Optimal reactivity and improved self-healing capability of structurally-dynamic polymers grafted on janus nanoparticles governed by chain stiffness and spatial organization[J]. Small, 2017, 13(13):1603155. |