[1] Wu J, Wang D, Bauer M E. Image-based atmospheric correction of QuickBird imagery of Minnesota cropland[J]. Remote Sensing of Environment, 2005, 99(3):315-325.
[2] Fecker U, Barkowsky M, Kaup A. Histogram-based prefiltering for luminance and chrominance compensation of multiview video[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2008, 18(9):1258-1267.
[3] Kim S J, Pollefeys M. Robust radiometric calibration and vignetting correction[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2008, 30(4):562-576.
[4] Buchsbaum G. A spatial processor model for object colour perception[J]. Journal of the Franklin Institute, 1980, 310(1):1-26.
[5] Van d W J, Gevers T, Gijsenij A. Edge-based color constancy[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2007, 16(9):2207-2214.
[6] Hirakawa K, Chakrabarti A, Zickler T. Color constancy with spatio-spectral statistics[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012, 34(8):1509-1519.
[7] Cheng D, Prasad D K, Brown M S. Illuminant estimation for color constancy:why spatial-domain methods work and the role of the color distribution[J]. Journal of the Optical Society of America A Optics Image Science & Vision, 2014, 31(5):1049.
[8] Perkins T, Adlergolden S M, Berk A, et al. Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery[J]. Optical Engineering, 2012, 51(11):1707.
[9] Gao B C, Montes M J, Davis C O, et al. Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean[J]. Remote Sensing of Environment, 2009, 113(9):S17-S24.
[10] Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3):211-252.
[11] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//International Conference on Neural Information Processing Systems. Curran Associates Inc. 2012:1097-1105.
[12] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. CoRR, 2014.arXiv:1409.1556.
[13] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Computer Vision and Pattern Recognition. IEEE, 2016:770-778.
[14] Zhu X X, Tuia D, Mou L, et al. Deep learning in remote sensing:a comprehensive review and list of resources[J]. IEEE Geoscience & Remote Sensing Magazine, 2018, 5(4):8-36.
[15] Chen S, Wang H, Xu F, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2016, 54(8):4806-4817.
[16] Pasolli E, Melgani F, Tuia D, et al. SVM active learning approach for image classification using spatial information[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(4):2217-2233.
[17] Lary D J, Remer L A, Macneill D, et al. Machine learning and bias correction of MODIS aerosol optical depth[J]. IEEE Geoscience & Remote Sensing Letters, 2009, 6(4):694-698.
[18] Ali I, Greifeneder F, Stamenkovic J, et al. Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data[J]. Remote Sensing, 2015, 7(12):221-236.
[19] Gregor B, Adlergolden S M. Quick atmospheric correction code:algorithm description and recent upgrades[J]. Optical Engineering, 2012, 51(11):1719.
[20] Barron J T. Convolutional color constancy[C]//IEEE International Conference on Computer Vision. IEEE, 2016:379-387.
[21] Barron J T, Tsai Y T. Fast Fourier color constancy[C]//Computer Vision and Pattern Recognition. IEEE, 2017:6950-6958.
[22] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Computer Vision and Pattern Recognition. IEEE, 2015:3431-3440.
[23] Huang G, Liu Z, Weinberger K Q, et al. Densely connected convolutional networks[C]//Computer Vision and Pattern Recognition. IEEE, 2017:2261-2269. |