›› 2019, Vol. 36 ›› Issue (4): 433-443.DOI: 10.7523/j.issn.2095-6134.2019.04.001
• Review Article • Next Articles
ZHOU Zili1, ZHANG Huai1,2, SHI Yaolin1
Received:
2018-03-13
Revised:
2018-05-02
Online:
2019-07-15
CLC Number:
ZHOU Zili, ZHANG Huai, SHI Yaolin. Research on the nonlinearity of nearshore water waves[J]. , 2019, 36(4): 433-443.
Add to citation manager EndNote|Ris|BibTeX
URL: http://journal.ucas.ac.cn/EN/10.7523/j.issn.2095-6134.2019.04.001
[1] 陈雪堂. 我国海洋环境污染问题研究[D].哈尔滨:东北林业大学, 2004. [2] Satake K. Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami[J]. Pure & Applied Geophysics, 1995, 144(3/4):455-470. [3] 李智广, 谢顺平, 都金康, 等. 海南岛及北部湾海域海啸数值模拟与影响分析[J]. 地球信息科学学报, 2015, 17(8):937-944. [4] 任智源. 南海海啸数值模拟研究[D].上海:上海交通大学, 2015. [5] 王培涛, 于福江, 赵联大, 等. 2011年3月11日日本地震海啸越洋传播及对中国影响的数值分析[J]. 地球物理学报, 2012, 55(9):3088-3096. [6] 张弛. 渤海海域天文潮预报及海啸、寒潮数值模拟[D].天津:天津大学, 2007. [7] 王培涛, 于福江, 范婷婷, 等. 海啸波传播的线性和非线性特征及近海陆架效应影响的数值研究[J]. 海洋学报, 2014,26(5):18-29. [8] Liu Y, Shi Y, Yuen D A, et al. Comparison of linear and nonlinear shallow wave water equations applied to tsunami waves over the China Sea[J]. Acta Geotechnica, 2009, 4(2):129-137. [9] 赵永良,张延廷. 浅海风暴潮和天文潮相作用中非线性效应的数值诊断分析[J]. 海洋学报, 1994, 16(1):12-22. [10] 余锡平. 近岸水波的解析理论[M]. 北京:科学出版社, 2012. [11] 李洪义. 近岸水域波流相互作用的Boussinesq方程模拟[D].大连:大连理工大学, 2014. [12] Wu Y T, Yeh C L,Hsiao S C. Three-dimensional numerical simulation on the interaction of solitary waves and porous breakwaters[J]. Coastal Engineering, 2014, 85(1):12-29. [13] Zweifel A, Hager W H,Minor H E. Plane impulse waves in reservoirs[J]. Journal of Waterway Port Coastal & Ocean Engineering, 2006, 132(5):358-368. [14] Méhauté B L. An introduction to hydrodynamics and water waves[M]. Berlin:Springer-Verlag, 1976. [15] Sander J,Hutter K. On the development of the theory of the solitary wave:a historical essay[J]. Acta Mechanica, 1991, 86(1/4):111-152. [16] Watanabe A,Sato S. A sheet-flow transport rate formula for asymmetric, forward-learning waves and currents[C]//29th International Conference on Coastal Engineering, Lisbon ASCE, 2004:1703-1714. [17] Elfrink B, Hanes D M,Ruessink B G. Parameterization and simulation of near bed orbital velocities under irregular waves in shallow water[J]. Coastal Engineering, 2006, 53(11):915-927. [18] Stoker J J. Water waves:the mathematical theory with applications[M]. New York:Interscience Publishers, Inc, 1957. [19] Monnier J, Couderc F, Dartus D, et al. Inverse algorithms for 2D shallow water equations in presence of wet dry fronts. Application to flood plain dynamics[J]. Advances in Water Resources, 2016, 97(7):11-24. [20] Le T T, Dang H P,Tran V C. Numerical simulation of tidal flow in Danang Bay based on non-hydrostatic shallow water equations[J]. Pacific Journal of Mathematics for Industry, 2016, 8(1):1. [21] Titov V V,Synolakis C E. Modeling of breaking and nonbreaking long-wave evolution and runup using VTCS-2[J]. Journal of Waterway Port Coastal & Ocean Engineering, 1995, 121(6):308-316. [22] Goto C, Ogawa Y, Shuto N, et al. IUGG/IOC time project, numerical method of tsunami simulation with the leap-frog scheme[M]. Paris:Ioc Manuals & Guides, 1997. [23] Lynett P,Liu P L-F. A numerical study of submarine-landslide-generated waves and run-up[J]. Proceedings Mathematical Physical & Engineering Sciences, 2002, 458(2028):2885-2910. [24] Romano M, Liong S Y, Vu M T, et al. Artificial neural network for tsunami forecasting[J]. Journal of Asian Earth Sciences, 2009, 36(1):29-37. [25] Kumar T S, Mahendra R S, Nayak S, et al. Coastal vulnerability assessment for Orissa State, East Coast of India[J]. Journal of Coastal Research, 2010, 26(3):523-534. [26] 李林燕. 南海海啸非线性反问题预报模式研究[D].北京:清华大学, 2011. [27] Arcos M E M,Leveque R J. Validating velocities in the GeoClaw Tsunami model using observations near Hawaii from the 2011 Tohoku Tsunami[J]. Pure & Applied Geophysics, 2015, 172(3/4):849-867. [28] Grilli S T, O'Reilly C, Harris J C, et al. Modeling of SMF tsunami hazard along the upper US East Coast:detailed impact around Ocean City, MD[J]. Natural Hazards, 2015, 76(2):705-746. [29] Sozdinler C O, Yalciner A C,Zaytsev A. Investigation of Tsunami hydrodynamic parameters in Inundation Zones with different structural layouts[J]. Pure & Applied Geophysics, 2015, 172(3/4):931-952. [30] Aricò C,Re C L. A non-hydrostatic pressure distribution solver for the nonlinear shallow water equations over irregular topography[J]. Advances in Water Resources, 2016, 98:47-69. [31] Dodd N,Thornton E B. Longshore current instabilities:growth to finite amplitude[C]//International Conference on Coastal Engineering, 1993:2655-2668. [32] Falqués A,Iranzo V. Numerical simulation of vorticity waves in the nearshore[J]. Journal of Geophysical Research Oceans, 1994, 99(C1):825-841. [33] Feddersen F. Weakly nonlinear shear waves[J]. Journal of Fluid Mechanics, 1998, 372:71-91. [34] 沈良朵. 缓坡沿岸流不稳定性特征研究[D].大连:大连理工大学, 2015. [35] Boussinesq J V. Theórie des ondes et des remous qui se propaent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond[J]. Journal de Mathématiques Pures et Appliquées, 1872,2(17):55-108. [36] Dh P. Long waves on a beach[J]. Journal of Fluid Mechanics, 1967, 27(4):815-827. [37] Madsen P A,Sørensen O R. A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry[J]. Coastal Engineering, 1991, 15(4):371-388. [38] Nwogu O. Alternative form of Boussinesq equations for nearshore wave propagation[J]. Journal of Waterway Port Coastal & Ocean Engineering, 1993, 119(6):618-638. [39] Zakharov V E. Stability of periodic waves of finite amplitude on the surface of a deep fluid[J]. Journal of Applied Mechanics & Technical Physics, 1968, 9(2):190-194. [40] Benjamin T B,C S J. Gravity-capillary waves with edge constraints[J]. Journal of Fluid Mechanics, 1979, 92(2):241-267. [41] Krasitskii V P. Canonical transformation in a theory of weakly nonlinear waves with a nondecay dispersion law[J]. Soviet Physics JETP, 1990, 71(5):921-927. [42] Krasitskii V P. On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves[J]. Journal of Fluid Mechanics, 1994, 272:1-20. [43] Sardanashvily G,Zakharov O. On application of the Hamilton formalism in fibred manifolds to field theory[J]. Differential Geometry & its Applications, 1993, 3:245-263. [44] Zakharov V E. Weakly nonlinear waves on the surface of an ideal finite depth fluid[J]. Am Math Soc Transl, 1998, 182(2):167-197. [45] Polnikov V G, Lavrenov I V. Calculation of the nonlinear energy transfer through the wave spectrum at the sea surface covered with broken ice[J]. Oceanology, 1999, 47(3):334-343. [46] Zaslavskii M M,Krasitskii V P. On the conversion of wave-gauge pressure data to the spectrum of surface waves[J]. Oceanology, 2001, 41(2):184-188. [47] Zaslavskii M M,Krasitskii V P. Stationary spectra of surface gravity waves in a finite-depth sea[J]. Izvestiya Atmospheric & Oceanic Physics, 2001, 37(1):105-112. [48] Huang N E, Shen Z,Long S R. A new view of nonlinear water waves:the Hilbert spectrum[J]. Ann Rev Fluid Mech, 1999, 31(1):417-457. [49] Huang Y, Biferale L, Calzavarini E, et al. Lagrangian single-particle turbulent statistics through the Hilbert-Huang transform[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2013, 87(4):041003(R). [50] Veltcheva A D. Wave and group transformation by a Hilbert spectrum[J]. Coastal Engineering Journal, 2002, 44(4):283-300. [51] Veltcheva A D. An application of HHT method to nearshore sea waves[M]//The Hilbert-Huang Transform in Engineering, Taylor & Francis:CRC Press, 2005:97-119. [52] Guignard S, Marcer R, Rey V, et al. Solitary wave breaking on sloping beaches:2-D two phase flow numerical simulation by SL-VOF method[J]. European Journal of Mechanics-B/Fluids, 2001, 20(1):57-74. [53] 张九山, 吴卫, 王本龙, 等. 带异形块体海堤越浪的数值模拟[J]. 水动力学研究与进展, 2006, 21(5):572-578. [54] Peng Z,Zou Q P. Spatial distribution of wave overtopping water behind coastal structures[J]. Coastal Engineering, 2011, 58(6):489-498. [55] Park H, Cox D T, Lynett P J, et al. Tsunami inundation modeling in constructed environments:a physical and numerical comparison of free-surface elevation, velocity, and momentum flux[J]. Coastal Engineering, 2013, 79(13):9-21. [56] 杨锦凌, 孙大鹏, 吴浩, 等. 斜坡堤波浪爬高和越浪数值模拟[J]. 海洋工程, 2013, 31(2):45-52. [57] Cao H J,Wan D C. RANS-VOF solver for solitary wave run-up on a circular cylinder[J]. China Ocean Engineering, 2015, 29(2):183-196. [58] 刘曾. 稳态共振波及非线性波流相互作用研究[D].上海:上海交通大学, 2015. [59] 赵彬彬, 杨婉秋, 王战, 等. 非线性水波在线性剪切流中的时域模拟[C]//第十四届全国水动力学学术会议暨第二十八届全国水动力学研讨会, 2017:252-258. [60] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings Mathematical Physical & Engineering Sciences, 1998, 454(1971):903-995. [61] 黄大吉, 赵进平,苏纪兰. 希尔伯特-黄变换的端点延拓[J]. 海洋学报, 2003, 25(1):1-11. [62] Ismail D K B, Lazure P,Puillat I. Application of Hilbert-Huang decomposition to temperature and currents data in the Réunion island[C]//Oceans 2016 MTS/IEEE, 2016:1-9. [63] Hao X,Shen L. Simulation-based study of air-sea momentum fluxes nearshore[C]//APS Meeting, 2015. [64] Hirt C W,Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. J Comput Phys, 1981, 39(1):201-225. [65] Shen Y M, Ng C O,Zheng Y H. Simulation of wave propagation over a submerged bar using the VOF method with a two-equation k-ε turbulence modeling[J]. Ocean Engineering, 2004, 31(1):87-95. [66] Demirbilek Z,Webster W C. Application of the green-Naghdi theory of fluid sheets to shallow-water wave problems. Report 1. Model development[R]. US Army Wat Exp Sta, Coastal Eng Res Cntr Tech Rep, 1992, CERC-92-11:45. [67] Kim J W, Bai K J, Ertekin R C, et al. A strongly-nonlinear model for water waves in water of variable depth:the irrotational green-Naghdi model[J]. Journal of Offshore Mechanics & Arctic Engineering, 2002, 125(1):813-822. [68] Bonneton P, Barthelemy E, Chazel F, et al. Recent advances in Serre-green Naghdi modelling for wave transformation, breaking and runup processes[J]. European Journal of Mechanics-B/Fluids, 2011, 30(6):589-597. [69] Chazel F, Lannes D,Marche F. Numerical simulation of strongly nonlinear and dispersive waves using a green-Naghdi model[J]. Journal of Scientific Computing, 2011, 48(1/3):105-116. [70] 段文洋, 王战, 杨婉秋, 等. 基于浅水层析波浪理论的波浪传播变形问题研究[C]//全国水动力学研讨会, 2017:265-271. [71] Wei G, Kirby J T, Grilli S T, et al. A fully nonlinear Boussinesq model for surface waves. I. Highly nonlinear, unsteady waves[J]. Journal of Fluid Mechanics, 1995, 294:71-92. [72] Agnon Y, Madsen P A,Schäffer H A. A new approach to high-order Boussinesq models[J]. Journal of Fluid Mechanics, 1999, 399:319-333. [73] Fuhrman D R,Bingham H B. Numerical solution of fully non-linear and highly dispersive Boussinesq equations in two horizontal dimensions[J]. International Journal for Numerical Methods in Fluids, 2004, 44(3):231-255. [74] Bingham H B,Agnon Y. A Fourier-Boussinesq method for nonlinear water waves[J]. European Journal of Mechanics, 2005, 24(2):255-274. [75] 张洪生, 冯文静,商辉. 非线性波传播的新型数值模拟模型及其实验验证:引入变换速度变量[J]. 海洋学报, 2007, 29(4):137-147. [76] 张卫国,陶涛. 强非线性广义Boussinesq方程孤波解的波形分析及求解[J]. 数学物理学报, 2008, 28(1):86-95. [77] Zhang H S, Wang W Y, Feng W J, et al. Tests and applications of a Boussinesq model with Ambient Current[J]. Journal of Hydrodynamics, 2010, 22(4):526-536. [78] Zhang H S, Wang W Y, Feng W J, et al. A numerical model for nonlinear wave propagation on non-uniform current[J]. China Ocean Engineering, 2010, 24(1):15-28. [79] Wang Y L, Zhang H S, Miao G I, et al. A new approach to high-order Boussinesq-type equation with ambient currents[J]. China Ocean Engineering, 2005, 19(1):49-60. [80] Yoon S B,Liu P L F. Interactions of currents and weakly nonlinear water waves in shallow water[J]. Journal of Fluid Mechanics, 1989, 205(205):397-419. [81] Chen Q, Madsen P A, Schäffer H A, et al. Wave-current interaction based on an enhanced Boussinesq approach[J]. Coastal Engineering, 1998, 33(1):11-39. [82] Yang C,Ertekin R C. Numerical simulation of nonlinear wave diffraction by a vertical cylinder[J]. Journal of Offshore Mechanics & Arctic Engineering, 1991, 114(1):34-44. [83] G. X. W U. Hydrodynamic force on a rigid body during impact with liquid[J]. Journal of Fluids & Structures, 1998, 12(5):549-559. [84] Maiti S,Sen D. Time-domain wave diffraction of two-dimensional single and twin hulls[J]. Ocean Engineering, 2001, 28(6):639-665. [85] Maiti S,Sen D. Nonlinear heave radiation forces on two-dimensional single and twin hulls[J]. Ocean Engineering, 2001, 28(8):1031-1052. [86] 黄波林. 水库滑坡涌浪灾害水波动力学分析方法研究[D].武汉:中国地质大学, 2014. [87] Shi F, Kirby J T, Harris J C, et al. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation[J]. Ocean Modelling, 2012, 43/44(2):36-51. [88] Tissier M, Bonneton P, Marche F, et al. A new approach to handle wave breaking in fully non-linear Boussinesq models[J]. Coastal Engineering, 2012, 67(3):54-66. [89] 房克照, 孙家文,尹晶. 近岸波浪传播的非静压数值模型[J]. 水科学进展, 2015, 26(1):114-122. [90] Madsen P A, Bingham H B,Liu H. A new Boussinesq method for fully nonlinear waves from shallow to deep water[J]. Journal of Fluid Mechanics, 2002, 462:1-30. [91] Fuhrman D R, Madsen P A,Bingham H B. A numerical study of crescent waves[J]. Journal of Fluid Mechanics, 2004, 513(513):309-341. [92] Longuet-Higgins M S,Cokelet E D. The deformation of steep surface waves on water. I. A numerical method of computation[J]. Proceedings of the Royal Society of London, 1976, 350(1660):1-26. [93] Longuet-Higgins M S,Cokelet E D. The deformation of steep surface waves on water. Ⅱ. Growth of normal-mode instabilities[J]. Proceedings of the Royal Society A, 1978, 364(1716):1-28. [94] Gobbi M C F,Kirby J T. Wave evolution over submerged sills:tests of a high-order Boussinesq model[J]. Coastal Engineering, 1999, 37(1):57-96. [95] Schäffer H A,Madsen P A. Further enhancements of Boussinesq-type equations[J]. Coastal Engineering, 1995, 26(1/2):1-14. [96] Madsen P A,Schäffer H A. Higher-order boussinesq-type equations for surface gravity waves:derivation and analysis[J]. Philosophical Transactions Mathematical Physical & Engineering Sciences, 1998, 356(1749):3123-3184. [97] ZhaoX, Liu H,Wang B L. Scenarios of local tsunamis in the China Seas by Boussinesq model[J]. China Ocean Engineering, 2014, 28(3):303-316. [98] 邹志利. 适合复杂地形的高阶Boussinesq水波方程[J]. 海洋学报, 2001, 23(1):109-119. [99] Grilli S E T. Modeling of tsunami generation by an underwater landslide in a 3D-NWT[C]//Proc of Offshore & Polar Eng Conf, 2001:132-139. [100] 邹志利. 含强水流高阶Boussinesq水波方程[J]. 海洋学报, 2000, 22(4):41-50. [101] 马小舟. 近岸低频波浪的Boussinesq模拟[D].大连理工大学, 2006. [102] 房克照. 四阶完全非线性Boussinesq水波方程及其简化模型[D].大连:大连理工大学, 2008. [103] Liang Q H. Flood simulation using a well-balanced shallow flow model[J]. Journal of Hydraulic Engineering, 2010, 136(9):669-675. |
[1] | WANG Hui, XU Ming-Hai. A new interpolation scheme of interface parameters for radial heat conduction [J]. , 2011, 28(5): 624-629. |
[2] |
Zhou Qing-Ming, Zhang Hong.
The Shine-Dalgarno local structure determines translation efficiency of mRNA in Escherichia coli [J]. , 2008, 25(5): 707-711. |
[3] |
zhang chao-fan, shi yao-lin.
Numerical simulation research on tsunami hazards [J]. , 2008, 25(3): 289-296. |
[4] | NIU Yue-Ping, GONG Shang-Qing. Quantum coherent control of dynamic properties of double-dark-resonance atomic systems [J]. , 2007, 24(6): 841-846. |
[5] | MA Wei-Ju, FENG Deng-Guo, WU Zhi-Ping, YANG Hai-Bo. On Constructing of Combiners with Memory [J]. , 2004, 21(4): 512-519. |
[6] | Shen Yunfen, Cai Qinghua. Complexity in Freshwater Ecosystems [J]. , 2003, 20(2): 131-138. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Journal of University of Chinese Academy of Sciences
Support by Beijing Magtech Co.ltd support@magtech.com.cn