[1] Passey Q R, Moretti F J, Kulla J B, et al. Practical model for organic richness from porosity and resistivity logs[J]. AAPG Bulletin, 1990, 74(12):1777-1794.
[2] 胡慧婷, 卢双舫, 刘超, 等. 测井资料计算源岩有机碳含量模型对比及分析[J]. 沉积学报, 2011, 29(6):1199-1205.
[3] 胡慧婷, 苏瑞, 刘超, 等. 广义ΔLgR技术预测陆相深层烃源岩有机碳含量方法及其应用[J]. 天然气地球科学, 2016, 27(1):149-155.
[4] 刘超. 测井资料评价烃源岩方法改进及作用[D]. 黑龙江大庆:东北石油大学, 2011.
[5] 刘超, 卢双舫, 薛海涛. 变系数ΔlogR方法及其在泥页岩有机质评价中的应用[J]. 地球物理学进展, 2014, 29(1):312-317.
[6] 朱光有, 金强, 张林晔. 用测井信息获取烃源岩的地球化学参数研究[J]. 测井技术, 2003, 27(2):104-109.
[7] 王攀, 彭苏萍, 杜文凤, 等. 基于测井参数的煤系烃源岩总有机碳含量预测模型[J]. 煤炭学报, 2017, 42(5):1266-1276.
[8] 郭龙, 陈践发, 苗忠英. 一种新的TOC含量拟合方法研究与应用[J]. 天然气地球科学, 2009, 20(6):951-956.
[9] Zhu Z, Wang G, Zhu G. The application of artificial neural network to the source rock's evaluation[J]. Progress in Geophysiscs, 2002, 17(1):137-140.
[10] Tan M, Song X, Yang X, et al. Support-vector-regression machine technology for total organic carbon content prediction from wireline logs in organic shale:a comparative study[J]. Journal of Natural Gas Science & Engineering, 2015, 26(1):792-802.
[11] Shi X, Wang J, Liu G, et al. Application of extreme learning machine and neural networks in total organic carbon content prediction in organic shale with wire line logs[J]. Journal of Natural Gas Science & Engineering, 2016, 33:687-702.
[12] Mahmoud A A A, Elkatatny S, Mahmoud M, et al. Determination of the total organic carbon (TOC) based on conventional well logs using artificial neural network[J]. International Journal of Coal Geology, 2017, 179:72-80.
[13] Bolandi V, Kadkhodaie A, Farzi R. Analyzing organic richness of source rocks from well log data by using SVM and ANN classifiers:a case study from the Kazhdumi formation, the Persian Gulf basin, offshore Iran[J]. Journal of Petroleum Science & Engineering, 2017, 151:224-234.
[14] Bakhtiar H A, Telmadarreie A, Shayesteh M, et al. Estimating total organic carbon content and source rock evaluation, applying ΔlogR and neural network methods:Ahwaz and Marun Oilfields, SW of Iran[J]. Petroleum Science and Technology, 2011, 29(16):1691-1704.
[15] Alizadeh B, Najjari S, Kadkhodaie-ilkhchi A. Artificial neural network modeling and cluster analysis for organic facies and burial history estimation using well log data:a case study of the South Pars Gas Field, Persian Gulf, Iran[J]. Computers & Geosciences, 2012, 45(4):261-269.
[16] Fu J, Zheng H, Mei T. Look closer to see better:Recurrent attention convolutional neural network for fine-grained image recognition[C]//CVPR. 2017:4476-4484.
[17] Karpathy A, Toderici G, Shetty S, et al. Large-scale video classification with convolutional neural networks[C]//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2014:1725-1732.
[18] Abdel-hamid O, Mohamed A-r, Jiang H, et al. Convolutional neural networks for speech recognition[J]. IEEE ACM Transactions on audio, speech, and language processing, 2014, 22(10):1533-1545.
[19] Er M J, Zhang Y, Wang N, et al. Attention pooling-based convolutional neural network for sentence modelling[J]. Information Sciences, 2016, 373:388-403.
[20] Zhao D, Yang T, Ou W, et al. Autopilot design for unmanned surface vehicle based on CNN and ACO[J]. International Journal of Computers, Communications & Control, 2018, 13(3):429-439.
[21] 程国建, 郭文惠, 范鹏召. 基于卷积神经网络的岩石图像分类[J]. 西安石油大学学报(自然科学版), 2017, 32(4):116-122.
[22] 程国建, 岳清清. 卷积神经网络在岩石薄片图像检索中的应用初探[J]. 智能计算机与应用, 2018, 8(2):43-51.
[23] 段友祥, 李根田, 孙歧峰. 卷积神经网络在储层预测中的应用研究[J]. 通信学报, 2016, 37(s1):1-9.
[24] 纪雪. 基于多波束数据的海底底质及地形复杂度分类研究[D]. 山东青岛:国家海洋局第一海洋研究所, 2017.
[25] 曹林林, 李海涛, 韩颜顺,等. 卷积神经网络在高分遥感影像分类中的应用[J]. 测绘科学, 2016, 41(9):170-175.
[26] Wu X, Ni C, Liu Q, et al. Genetic types and source of the Upper Paleozoic tight gas in the Hangjinqi area, northern Ordos Basin, China[J]. Geofluids, 2017, 3:1-14.
[27] 杨俊杰, 裴锡古. 中国天然气地质学:第4卷:鄂尔多斯盆地[M]. 北京:石油工业出版社, 1996.
[28] 杨娅敏, 赵桂萍, 李良,等. 杭锦旗地区地层水特征研究及其油气地质意义[J]. 中国科学院大学学报, 2016, 33(4):519-527.
[29] He J, Ding W, Jiang Z, et al. Logging identification and characteristic analysis of the lacustrine organic-rich shale lithofacies:a case study from the Es3l shale in the Jiyang Depression, Bohai Bay Basin, Eastern China[J]. Journal of Petroleum Science and Engineering, 2016, 145:238-255.
[30] 王攀,梁明星. 煤系烃源岩测井响应特征及有机碳评价方法[J]. 物探与化探, 2016, 40(1):197-202.
[31] 殷瑞, 苏松志, 李绍滋. 一种卷积神经网络的图像矩正则化策略[J]. 智能系统学报, 2016, 11(1):43-48.
[32] 刘万军, 梁雪剑, 曲海成. 不同池化模型的卷积神经网络学习性能研究[J]. 中国图象图形学报, 2016, 21(9):1178-1190.
[33] 庞雄奇, 李倩文, 陈践发, 等. 含油气盆地深部高过成熟烃源岩古TOC恢复方法及其应用[J]. 古地理学报, 2014, 16(6):769-789. |