[1] Tatsumi Y, Kogiso T. The subduction factory:its role in the evolution of the Earth's crust and mantle[J]. Geological Society, London, Special Publications, 2003, 219(1):55-80.
[2] Marschall H, Foster G. Boron isotopes:the fifth element[M]. Springer International Publishing, 2018:217-247.
[3] Pommier A. Geophysical assessment of migration and storage conditions of fluids in subduction zones[J]. Earth, Planets and Space, 2014, 66:38.doi:10.1186/1880-5981-66-38.
[4] Ferrand T P, Hilairet N, Incel S, et al. Dehydration-driven stress transfer triggers intermediate-depth earthquakes[J]. Nature Communications, 2017, 8(15247):1-11.
[5] Jung H, Green Ii H W, Dobrzhinetskaya L F. Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change[J]. Nature, 2004, 428:545-549.
[6] Manthilake G, Bolfan-Casanova N, Novella D, et al. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges[J]. Science Advances, 2016, 2(5):1-5.
[7] Manthilake G, Mookherjee M, Bolfan-Casanova N, et al. Electrical conductivity of lawsonite and dehydrating fluids at high pressures and temperatures[J]. Geophysical Research Letters, 2015, 42(18):7398-7405.
[8] Wang D, Liu X, Liu T, et al. Constraints from the dehydration of antigorite on high-conductivity anomalies in subduction zones[J]. Scientific Reports, 2017, 7(16893):1-9.
[9] Wang D, Guo Y, Yu Y, et al. Electrical conductivity of amphibole-bearing rocks:influence of dehydration[J]. Contributions to Mineralogy and Petrology, 2012, 164(1):17-25.
[10] Hu H, Dai L, Li H, et al. Influence of dehydration on the electrical conductivity of epidote and implications for high-conductivity anomalies in subduction zones[J]. Journal of Geophysical Research:Solid Earth, 2017, 122(4):2751-2762.
[11] Chollet M, Daniel I, Koga K T, et al. Kinetics and mechanism of antigorite dehydration:implications for subduction zone seismicity[J]. Journal of Geophysical Research:Solid Earth, 2011, 116(B04203):1-9.
[12] Peacock S M. Are the lower planes of double seismic zones caused by serpentine dehydration in abducting oceanic mantle?[J]. Geology, 2001, 29(4):299-302.
[13] Sawai M, Katayama I, Hamada A, et al. Dehydration kinetics of antigorite using in situ high-temperature infrared microspectroscopy[J]. Physics and Chemistry of Minerals, 2013, 40(4):319-330.
[14] Viti C. Serpentine minerals discrimination by thermal analysis[J]. American Mineralogist, 2010, 95(4):631-638.
[15] Liu T, Wang D, Shen K, et al. Kinetics of antigorite dehydration:rapid dehydration as a trigger for lower-plane seismicity in subduction zones[J]. American Mineralogist, 2019, 104(2):282-290.
[16] Perrillat J-P, Daniel I, Koga K T, et al. Kinetics of antigorite dehydration:a real-time X-ray diffraction study[J]. Earth and Planetary Science Letters, 2005, 236(3):899-913.
[17] Brindley G W, Hayami R. Kinetics and mechanisms of dehydration and recrystallization of serpentine*-I[J]. Clays and Clay Minerals, 1963, 12(1):35-47.
[18] Balucan R D, Kennedy E M, Mackie J F, et al. Optimization of antigorite heat pre-treatment via kinetic modeling of the dehydroxylation reaction for CO2 mineralization[J]. Greenhouse Gases:Science and Technology, 2011, 1(4):294-304.
[19] Gualtieri A F, Giacobbe C, Viti C. The dehydroxylation of serpentine group minerals[J]. American Mineralogist, 2012, 97(4):666-680.
[20] Yang T, Wen W, Guang-Zhi Y, et al. Introduction of the X-ray diffraction beeline of SSRF*[J]. Nuclear Science and Techniques, 2015, 26(020101):1-5.
[21] Liu C, Zhang R, Shen K, et al. An in situ kinetic study of the dehydration of brucite using synchrotron X-ray powder diffraction[J]. The Canadian Mineralogist, 2018, 56(1):101-108.
[22] 张瑞鑫, 易丽, 刘红, 等. 铁含量对滑石脱水动力学的影响及其地质意义[J]. 地质通报, 2017, 36(6):1051-1055.
[23] Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III[J]. The Journal of Chemical Physics, 1941, 9(2):177-184.
[24] Cahn J W. The kinetics of grain boundary nucleated reactions[J]. Acta Metallurgica, 1956, 4(5):449-459.
[25] Dlugogorski B Z, Balucan R D. Dehydroxylation of serpentine minerals:implications for mineral carbonation[J]. Renewable and Sustainable Energy Reviews, 2014, 31:353-367.
[26] Criado J M, Ortega A. A study of the influence of particle size on the thermal decomposition of CaCO3 by means of constant rate thermal analysis[J]. Thermochimica Acta, 1992, 195:163-167.
[27] Wang D, Wang Y, Yi L, et al. Dehydration kinetics of natural talc[J]. The Canadian Mineralogist, 2015, 53(4):643-651. |