[1] 巴曙松. 巴塞尔新资本协议研究[M]. 北京:中国金融出版社,2003. [2] 王颖,聂广礼,石勇. 基于信用评分模型的我国商业银行客户违约概率研究[J]. 管理评论,2012,24(2):78-87. [3] Stapor K, Smolarczyk T, Fabian P. Heteroscedastic discriminant analysis combined with feature selection for credit scoring[J]. Statistics in Transition New Series, 2016, 17(2):265-280. [4] Kordas G. Credit scoring using binary quantile regression[C]//Dodge Y. Statistical Data Analysis Based on the L1-Norm and Related Methods. Basel:Birkhäuser Press, 2002:125-137. [5] Baesens B, Setiono R, Mues C, et al. Using neural network rule extraction and decision tables for credit-risk evaluation[J]. Management Science, 2003, 49(3):312-329. [6] Marcano-Cedeño A, Marin-De-La-Barcena A, Jimenez-Trillo J, et al. Artificial metaplasticity neural network applied to credit scoring[J]. International Journal of Neural Systems, 2011, 21(4):311-317. [7] Desai V S, Conway D G, Crook J N, et al. Credit-scoring models in the credit-union environment using neural networks and genetic algorithms[J]. IMA Journal of Management Mathematics, 1997, 8(4):323-346. [8] Lundy M. Cluster analysis in credit scoring:credit scoring and credit control[M]. New York:Oxford University Press, 1993. [9] Henley W E, Hand D J. A k-nearest-neighbour classifier for assessing consumer credit risk[J]. Journal of the Royal Statistical Society, 1996, 45(1):77-95. [10] Khanbabaei M, Alborzi M. The use of genetic algorithm:clustering and feature selection techniques in construction of decision tree models for credit scoring[J]. International Journal of Managing Information Technology, 2013, 5(4):13-32. [11] Bunn D W. An empirical Bayes procedure for the credit granting decision[J]. Operations Research Letters, 1981, 1(1):10-12. [12] 刘喜和,郭娜. 我国住房抵押贷款信用风险因素分析[J]. 山东社会科学,2012(3):105-108. [13] Lee T H, Zhang M. Bias correction and statistical test for developing credit scoring model through logistic regression approach[J]. International Journal of Information Technology & Decision Making, 2003, 2(2):299-311. [14] De Jongh P J, De Jongh E, Pienaar M, et al. The impact of pre-selected variance inflation factor thresholds on the stability and predictive power of logistic regression models in credit scoring[J]. African Journals OnlineORiON, 2015, 31(1):17-37. [15] 魏秋萍,张景肖. 基于偏最小二乘方法的信用评分模型[J]. 统计与决策,2012(10):4-6. [16] 史小康,何晓群. 有偏Logistic回归模型及其在个人信用评级中的应用研究[J]. 数理统计与管理,2015,34(6):1048-1056. [17] Tibshirani R. Regression shrinkage and selection via the lasso:a retrospective[J]. Journal of the Royal Statistical Society B, 2011, 73(3):273-282. [18] 张婷婷,景英川. 个人信用评分的Adaptive Lasso-Logistic回归分析[J]. 数学的实践与认识,2016,46(18):92-99. [19] 张娟,张贝贝. 基于Group-Lasso方法的广义半参数可加信用评分模型应用研究[J]. 数理统计与管理,2016,35(3):517-524. [20] Meier L, Van de Geer S, Bühlmanm P. The group lasso for logistic regression[J]. Journal of the Royal Statistical Society B, 2008, 70(1):53-71. [21] Zou H, Hastie T, Tibshirani R. On the "degrees of freedom" of the lasso[J]. The Annals of Statistics, 2007, 35(5):2173-2192. [22] Yuan M, Lin Y. Model selection and estimation in regression with grouped variables[J]. Journal of the Royal Statistical Society B, 2006, 68(1):49-67. [23] Tseng P. Convergence of a block coordinate descent method for nondifferentiable minimization[J]. Journal of Optimization Theory and Applications, 2001, 109(3):475-494. [24] Chawla N V, Japkowicz N, Kotcz A. Editorial:special issue on learning from imbalanced data sets[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1):1-6. [25] Chawla N V, Bowyer K W, Hall L O, et al. SMOTE:synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16(1):321-357. [26] Hastie T, Tibshirani R, Friedman J. The elements of statistical learning[M]. 2nd ed. New York:Springer, 2009. [27] Menardi G, Torelli N. Training and assessing classification rules with imbalanced data[J]. Data Mining and Knowledge Discovery, 2014, 28(1):92-122. [28] Lunardon N, Menardi G, Torelli N. ROSE:a package for binary imbalanced learning[J]. The R Journal, 2014, 6(1):79-89. [29] Mamitsuka H. Selecting features in microarray classification using ROC curves[J]. Pattern Recognition, 2006, 39(12):2393-2404. |