[1] Lutz M, Verbeek C, Schlegel C. Towards a robot fleet for intra-logistic tasks:combining free robot navigation with multi-robot coordination at bottlenecks[C]//2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA). Berlin, Germany:IEEE Press, 2016:1-4. [2] Dai Z H, Wu M, Chen X. Multi-robot cooperative transportation using formation control[C]//200827th Chinese Control Conference. Kunming, China:IEEE Press, 2008:346-350. [3] Jia Q L, Xing X J, Li G W. Formation path tracking controller of multiple robot system by high order sliding mode[C]//2007 IEEE International Conference on Automation and Logistics. Jinan, China:IEEE Press, 2007:923-927. [4] Ouyang P R, Acob J, Pano V. PD with sliding mode control for trajectory tracking of robotic system[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(2):189-200. [5] Xu Q, Kan J M, Chen S N, et al. Fuzzy PID based trajectory tracking control of mobile robot and its simulation in Simulink[J]. International Journal of Control and Automation, 2014, 7(8):233-244. [6] Bishop A N, Savkin A V, Pathirana P N. Vision-based target tracking and surveillance with robust set-valued state estimation[J]. IEEE Signal Processing Letters, 2010, 17(3):289-292. [7] Farid Z, Nordin R, Ismail M. Recent advances in wireless indoor localization techniques and system[J]. Journal of Computer Networks and Communications, 2013, 2013:1-12. [8] Lü Q, Wei H, Lin H C, et al. Formation control of multi robot based on UWB distance measurement[C]//2018 Chinese Control And Decision Conference (CCDC). Shenyang, China:IEEE Press, 2018:2404-2408. [9] Chueh M, Yeung Y L W A, Lei K P C, et al. Following controller for autonomous mobile robots using behavioral cues[J]. IEEE Transactions on Industrial Electronics, 2008, 55(8):3124-3132. [10] Wang H S, Guo D J, Liang X W, et al. Adaptive vision-based leader-follower formation control of mobile robots[J]. IEEE Transactions on Industrial Electronics, 2017, 64(4):2893-2902. [11] Kehoe B, Patil S, Abbeel P, et al. A survey of research on cloud robotics and automation[J]. IEEE Transactions on Automation Science and Engineering, 2015, 12(2):398-409. [12] Du Z H, He L G, Chen Y N, et al. Robot Cloud:Bridging the power of robotics and cloud computing[J]. Future Generation Computer Systems, 2017, 74:337-348. [13] Kehoe B, Matsukawa A, Candido S, et al. Cloud-based robot grasping with the google object recognition engine[C]//2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany:IEEE Press, 2013:4263-4270. [14] Miratabzadeh S A, Gallardo N, Gamez N, et al. Cloud robotics:a software architecture:for heterogeneous large-scale autonomous robots[C]//2016 World Automation Congress (WAC) RioGrande, Puerto Rico:IEEE Press, 2016:1-6. [15] Yang Y, Luo X L, Chu X L, et al. Fog-enabled intelligent IoT systems[M]. Cham, Switzerland:Springer, 2019:163-184. [16] 王营华, 宋光明, 刘盛松, 等. 一种视觉引导的作业型飞行机器人设计[J]. 机器人, 2019, 41(3):353-361. [17] Li S Q, Xu C, Xie M. A robust O(n) solution to the perspective-n-point problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7):1444-1450. [18] Dai H, Lu Y M. Iterative learning control for linear time-variant continuous systems with iteration-varying initial conditions and reference trajectories[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2011, 28(3):366-374. [19] Bien Z, Xu J X. Iterative learning control:analysis, design, integration and applications[M]. MA, USA:Kluwer Academic Publishers, 1998:43-45. [20] Ykevin. Rikirobot Docs[EB/OL]. (2018-02-21)[2020-01-13]. https://github.com/ykevin/rikirobot_docs. [21] Chen N X, Yang Y, Zhang T, et al. Fog as a service technology[J]. IEEE Communications Magazine, 2018, 56(11):95-101. [22] Open Source Robotics Foundation. Class Subscriber[EB/OL]. (2020-01-10)[2020-01-13]. http://docs.ros.org/api/rospy/html/rospy.topics.Subscriber-class.html. [23] ExtraHop. Best Practices For Tcp Optimization[EB/OL]. (2019-06-29)[2020-01-13]. https://www.extrahop.com/company/blog/2016/tcp-nodelay-nagle-quickack-best-practices/. [24] Wang Y, Cheng L, Hou Z G, et al. Optimal formation of multirobot systems based on a recurrent neural network[J]. IEEE transactions on neural networks and learning systems, 2015, 27(2):322-333. |