[1] 王新栋,于华,江成. 社交网络关键节点检测的积极效应问题[J]. 中国科学院大学学报, 2019, 36(3):425-432. DOI:10.7523/j.issn.2095-6134.2019.03.017. [2] Fan J, Liao Y, Liu H. An overview of the estimation of large covariance and precision matrices [J]. Economet J, 2016, 19(1): C1-C32. DOI:10.1111/ectj.12061. [3] Chen X, Liu Y, Liu H, et al. Learning spatial-temporal varying graphs with applications to climate data analysis [ C]//Twenty-Fourth AAAI Conference on Artificial Intelligence: AAAI Press, 2010: 425-430. [4] Schäfer J, Strimmer K. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics [J]. Stat Appl Genet Mol Biol, 2005, 4(1): Article 32. DOI:10.2202/1544-6115.1175. [5] Wainwright M J, Jordan M I. Graphical models, exponential families, and variational inference [J]. Found Trends Mach Learn, 2008, 1(1/2):1-305. DOI:10.1561/2200000001. [6] Liu H, Lafferty J D, Wasserman L A. The nonparanormal: semiparametric estimation of high dimensional undirected graphs [J]. J Mach Learn Res, 2009,10(3): 2295-2328. [7] Lauritzen S. Graphical models [M]. New York: Oxford Univ Press, 1996. [8] Meinshausen N, Bühlmann P. High-dimensional graphs and variable selection with the lasso [J]. Ann Statist, 2006, 34(3): 1436-1462. DOI:10.1214/009053606000000281. [9] Yuan M, Lin Y. Model selection and estimation in the Gaussian graphical model [J]. Biometrika, 2007, 94(1):19-35. DOI:10.1093/biomet/asm018. [10] Bickel P, Levina E. Covariance regularization by thresholding [J]. Ann Statist, 2008, 36(6): 2577-2604. DOI:10.1214/08-aos600. [11] Friedman J, Hastie T, Tibshirani R, et al. Sparse inverse covariance estimation with the graphical lasso [J]. Biostatistics, 2007, 9(3):432-441. DOI:10.1093/biostatistics/kxm045. [12] Zhang T, Zou H. Sparse precision matrix estimation via lasso penalized D-trace loss[J]. Biometrika, 2014, 101:103-120. DOI:10.1093/biomet/ast059. [13] Liu W D, Luo X. Fast and adaptive sparse precision matrix estimation in high dimensions[J]. J Multivariate Anal, 2015, 135: 153-162. DOI:10.1016/j.jmva.2014.11.005. [14] Ren Z, Sun T N, Zhang C H, et al. Asymptotic normality and optimalities in estimation of large Gaussian graphical models [J]. Ann Statist, 2015, 43(3): 991-1026. DOI:10.1214/14-aos1286. [15] Fan Y, Lyu J C. Innovated scalable efficient estimation in ultra-large Gaussian graphical models [J]. Ann Statist, 2016, 44(5): 2098-2126. DOI:10.1214/15-aos1416. [16] 杨军,于丹. 修如旧模型中储存系统备件量的计算及其置信区间[J]. 中国科学院研究生院学报, 2004, 21(4): 441-446. DOI:10.7523/j.issn.2095-6134.2004.4.002. [17] Cai T, Liu W D, Luo X. A constrained L1 minimization approach to sparse precision matrix estimation [J]. J Amer Statist Assoc, 2011, 106(494): 594-607. DOI:10.1198/jasa.2011.tm10155. [18] Nickl R, van de Geer S. Confidence sets in sparse regression [J]. Ann Statist, 2012, 41: 2852-2876. DOI:10.1214/13-aos1170. [19] van de Geer S, Bühlmann P, Ritov Y, et al. On asymptotically optimal confidence regions and tests for high dimensional models [J]. Ann Statist, 2014, 42(3): 1166-1202. DOI:10.1214/14-aos1221. [20] Meinshausen N. Assumption-free confidence intervals for groups of variables in sparse high-dimensional regression [J]. arXiv:1309.3489, 2013. [21] Zhang C H, Zhang S S. Confidence intervals for low dimensional parameters in high dimensional liner models [J]. J Roy Statist Soc Ser B, 2014, 76(1): 217-242. DOI:10.1111/rssb.12026. [22] Janková J, van de Geer S. Confidence intervals for high-dimensional inverse covariance estimation [J]. Electron J Stat, 2015, 9(1): 1205-1229. DOI:10.1214/15-ejs1031. [23] Huang X, Li M. Confidence intervals for sparse precision matrix estimation via Lasso penalized D-trace loss [J]. Commun Stat Theor M, 2017, 46(24): 12299-12316. DOI:10.1080/03610926.2017.1295074. [24] Janková J, van de Geer S. Inference in high-dimensional graphical models [J]. arXiv:1801.08512, 2018. [25] Sun T N, Zhang C. Scaled sparse linear regression [J]. Biometrika, 2012, 99(4): 879-898. DOI:10.1093/biomet/ass043. |