[1] Chen C M, Volski V, van der Perre L, et al. Finite large antenna arrays for massive MIMO: characterization and system impact[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 6712-6720.DOI:10.1109/TAP.2017.2754444. [2] Hassan M E, Falou A E, Langlais C. Performance assessment of linear precoding for multi-user massive MIMO systems on a realistic 5G mmWave channel[C]//2018 IEEE Middle East and North Africa Communications Conference (MENACOMM). April 18-20, 2018, Jounieh, Lebanon. IEEE, 2018:1-5.DOI:10.1109/MENACOMM.2018.8371025. [3] Gao Y, Vinck H, Kaiser T. Massive MIMO antenna selection: switching architectures, capacity bounds, and optimal antenna selection algorithms[J]. IEEE Transactions on Signal Processing, 2018, 66(5): 1346-1360.DOI:10.1109/TSP.2017.2786220. [4] Björnson E, Hoydis J, Sanguinetti L. Massive MIMO has unlimited capacity[J]. IEEE Transactions on Wireless Communications, 2018, 17(1): 574-590.DOI:10.1109/TWC.2017.2768423. [5] Duel-Hallen A. Fading channel prediction for mobile radio adaptive transmission systems[J]. Proceedings of the IEEE, 2007, 95(12): 2299-2313.DOI:10.1109/JPRDC.2007.904443. [6] Zhao J W, Xie H X, Gao F F, et al. Time varying channel tracking with spatial and temporal BEM for massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2018, 17(8): 5653-5666.DOI:10.1109/TWC.2018.2848259. [7] He P, Yuan Y, Liu G. Web services quality prediction based on multivariate time series analysis[C]//2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS), November 23-25, 2018, Beijing, China. IEEE, 2018: 881-884.DOI:10.1109/ICSESS.2018.8663771. [8] Miao T. Research of regional drought forecasting based on phase space reconstruction and wavelet neural network model[C]//2018 7th International Conference on Agro-geoinformatics (Agro-geoinformatics). August 6-9, 2018, Hangzhou, China. IEEE, 2018: 1-4.DOI:10.1109/Agro-Geoinformatics.2018.8475999. [9] Han Y J, Liu J. The online forecasting research of short-term wind speed and power generation at wind farm based on phase space reconstruction[C]//2015 Seventh International Conference on Measuring Technology and Mechatronics Automation. June 13-14, 2015, Nanchang, China. IEEE, 2015: 1234-1237.DOI:10.1109/ICMTMA.2015.300. [10] Guo Z Q, Chen L J, Liu P. Short-term stock forecasting based on phase space reconstruction and cluster analysis[C]//2019 11th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). August 24-25, 2019, Hangzhou, China. IEEE, 2019, 2:50-53.DOI:10.1109/IHMSC.2019.10107. [11] Wang B Y, Zheng W X. Blind adaptive channel identification/equalization in chaotic communications by using nonlinear prediction technique[C]//Proceedings 7th International Conference on Signal Processing, 2014. Proceedings. ICSP '04.2004. August 31-September 4, 2004, Beijing, China. IEEE, 2004: 372-375.DOI:10.1109/ICDSP.2004.1452659. [12] Zhou Y T, Wang R, Xia K W. Nonlinear prediction of fast fading channel based on minimax probability machine[C]//2011 6th IEEE Conference on Industrial Electronics and Applications. June 21-23, 2011, Beijing, China. IEEE, 2011: 451-454.DOI:10.1109/ICIEA.2011.5975626. [13] Jiang W, Schotten H D. A comparison of wireless channel predictors: artificial intelligence versus Kalman filter[C]//ICC 2019—2019 IEEE International Conference on Communications (ICC). May 20-24, 2019, Shanghai, China. IEEE, 2019: 1-6.DOI:10.1109/ICC.2019.8761308. [14] Nagashima R, Ohtsuki T, Jiang W J, et al. Channel prediction for massive MIMO with channel compression based on principal component analysis[C]//2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). September 4-8, 2016, Valencia, Spain. IEEE, 2016: 1-6.DOI:10.1109/PIMRC.2016.7794949. [15] Gu S S, Jiao J, Huang Z X, et al. ARMA-based adaptive coding transmission over millimeter-wave channel for integrated satellite-terrestrial networks[J]. IEEE Access, 2018, 6: 21635-21645.DOI:10.1109/ACCESS.2018.2825256. [16] Yang Y, Li Y, Zhang W X, et al. Generative-adversarial-network-based wireless channel modeling: challenges and opportunities[J]. IEEE Communications Magazine, 2019, 57(3): 22-27.DOI:10.1109/MCOM.2019.1800635. [17] Huang J, Wang C X, Bai L, et al. A big data enabled channel model for 5G wireless communication systems[J]. IEEE Transactions on Big Data, 2020, 6(2): 211-222.DOI:10.1109/TBDATA.2018.2884489. [18] Abarbanel H D I, Brown R, Kadtke J B. Prediction in chaotic nonlinear systems: methods for time series with broadband Fourier spectra[J]. Physical Review A, 1990, 41(4): 1782. [19] Rosenstein M T, Collins J J, de Luca C J. A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physica D: Nonlinear Phenomena, 1993,65(1/2):117-134.DOI:10.1016/0167-2789(93)90009-P. [20] Abarbanel H D I, Brown R, Sidorowich J J, et al. The analysis of observed chaotic data in physical systems[J]. Reviews of Modern Physics, 1993, 65(4): 1331-1392.DOI:10.1103/REVMODPHYS.65.1331. [21] Fraser A M, Swinney H L. Independent coordinates for strange attractors from mutual information[J]. Physical Review. A, General Physics, 1986, 33(2): 1134-1140.DOI:10.1103/physreva.33.1134. [22] Ng W W, Panu U S, Lennox W C. Chaos based Analytical techniques for daily extreme hydrological observations[J]. Journal of Hydrology, 2007, 342(1/2): 17-41.DOI:10.1016/j.jhydrol.2007.04.023. [23] Takens F. Detecting strange attractors in turbulence[M]//Lecture Notes in Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1981:366-381. [24] Abarbanel H D I, Brown R, Kadtke J B. Prediction and system identification in chaotic nonlinear systems: time series with broadband spectra[J]. Physics Letters A, 1989, 138(8):401-408.DOI:10.1016/0375-9601(89)90839-6. |