[1] 张良培, 武辰. 多时相遥感影像变化检测的现状与展望[J]. 测绘学报, 2017, 46(10):1447-1459. [2] 马建文, 田国良, 王长耀, 等. 遥感变化检测技术发展综述[J]. 地球科学进展, 2004, 19(2):192-196. [3] 杜培军, 王欣, 蒙亚平, 等. 面向地理国情监测的变化检测与地表覆盖信息更新方法[J]. 地球信息科学学报, 2020, 22(4):857-866. [4] Lu L L, Guo H D, Corbane C, et al. Urban sprawl in provincial capital cities in China:evidence from multi-temporal urban land products using Landsat data[J]. Science Bulletin, 2019, 64(14):955-957. [5] Huang X, Zhang L P, Zhu T T. Building change detection from multitemporal high-resolution remotely sensed images based on a morphological building index[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1):105-115. [6] Tang Y Q, Huang X, Zhang L P. Fault-tolerant building change detection from urban high-resolution remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5):1060-1064. [7] Huang X, Zhu T T, Zhang L P, et al. A novel building change index for automatic building change detection from high-resolution remote sensing imagery[J]. Remote Sensing Letters, 2014, 5(8):713-722. [8] Sofina N, Ehlers M. Building change detection using high resolution remotely sensed data and GIS[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(8):3430-3438. [9] Gueguen L, Pesaresi M, Ehrlich D, et al. Urbanization detection by a region based mixed information change analysis between built-up indicators[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(6):2410-2420. [10] Huang X, Wen D W, Li J Y, et al. Multi-level monitoring of subtle urban changes for the megacities of China using high-resolution multi-view satellite imagery[J]. Remote Sensing of Environment, 2017, 196:56-75. [11] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90. [12] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651. [13] Ren S Q, He K M, Girshick R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [14] Gong J Q, Hu X Y, Pang S Y, et al. Patch matching and dense CRF-based co-refinement for building change detection from bi-temporal aerial images[J]. Sensors, 2019, 19(7):1557. [15] Ji S P, Shen Y Y, Lu M, et al. Building instance change detection from large-scale aerial images using convolutional neural networks and simulated samples[J]. Remote Sensing, 2019, 11(11):1343. [16] Caye Daudt R, Le Saux B, Boulch A. Fully convolutional siamese networks for change detection[C]//International Conference on Image Processing. Athens, Greece:IEEE, 2018:4063-4067. [17] Zhan Y, Fu K, Yan M L, et al. Change detection based on deep Siamese convolutional network for optical aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10):1845-1849. [18] El Amin A M, Liu Q J, Wang Y H. Zoom out CNNs features for optical remote sensing change detection[C]//International Conference on Image, Vision and Computing. Chengdu, China:IEEE, 2017:812-817. [19] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]//International Conference on Learning Representations. San Diego, CA, USA:Computational and Biological Learning Society, 2015:1-14. [20] Caye Daudt R, Le Saux B, Boulch A, et al. Multitask learning for large-scale semantic change detection[J]. Computer Vision and Image Understanding, 2019, 187:102783. [21] Bao T F, Fu C Q, Fang T, et al. PPCNET:a combined patch-level and pixel-level end-to-end deep network for high-resolution remote sensing image change detection[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(10):1797-1801. [22] Jiang H W, Hu X Y, Li K, et al. PGA-SiamNet:pyramid feature-based attention-guided siamese network for remote sensing orthoimagery building change detection[J]. Remote Sensing, 2020, 12(3):484. [23] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA:IEEE, 2016:770-778. [24] Chen H, Shi Z W. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10):1662. [25] Peng X L, Zhong R F, Li Z, et al. Optical remote sensing image change detection based on attention mechanism and image difference[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, PP(99):1-12. [26] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Salt Lake City, UT, USA:IEEE, 2018:7132-7141. |