[1] Clement A, DiNezio P. Climate change. The tropical Pacific Ocean:back in the driver's seat?[J]. Science, 2014, 343(6174):976-978.DOI:10.1126/science.1248115. [2] Cohen J, Screen J A, Furtado J C, et al. Recent Arctic amplification and extreme mid-latitude weather[J]. Nature Geoscience, 2014, 7(9):627-637.DOI:10.1038/nge02234. [3] Immerzeel W W, van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5984):1382-1385.DOI:10.1126/science.1183188. [4] Clem K R, Fogt R L, Turner J, et al. Record warming at the South Pole during the past three decades[J]. Nature Climate Change, 2020, 10(8):762-770.DOI:10.1038/s41558-020-0815-2. [5] Palmer T. Record-breaking winters and global climate change[J]. Science, 2014, 344(6186):803-804.DOI:10.1126/science.1255147. [6] Hopsch S, Cohen J, Dethloff K. Analysis of a link between fall Arctic Sea ice concentration and atmospheric patterns in the following winter[J]. Tellus A:Dynamic Meteorology and Oceanography, 2012, 64(1):18624.DOI:10.3402/tellusa.v64i0.18624. [7] Tang Q H, Zhang X J, Yang X H, et al. Cold winter extremes in northern continents linked to Arctic Sea ice loss[J]. Environmental Research Letters, 2013, 8(1):014036.DOI:10.1088/1748-9326/8/1/014036. [8] Kim B M, Son S W, Min S K, et al. Weakening of the stratospheric polar vortex by Arctic Sea-ice loss[J]. Nature Communications, 2014, 5:4646.DOI:10.1038/ncomms5646. [9] Cohen J, Barlow M, Saito K. Decadal fluctuations in planetary wave forcing modulate global warming in late boreal winter[J]. Journal of Climate, 2009, 22(16):4418-4426.DOI:10.1175/2009jcli2931.1. [10] Zhang J K, Tian W S, Chipperfield M P, et al. Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades[J]. Nature Climate Change, 2016, 6(12):1094-1099.DOI:10.1038/nclimate3136. [11] Mori M, Watanabe M, Shiogama H, et al. Robust Arctic Sea-ice influence on the frequent Eurasian cold winters in past decades[J]. Nature Geoscience, 2014, 7(12):869-873.DOI:10.1038/ngeo2277. [12] Luo D H, Chen X D, Overland J, et al. Weakened potential vorticity barrier linked to recent winter Arctic Sea ice loss and midlatitude cold extremes[J]. Journal of Climate, 2019, 32(14):4235-4261.DOI:10.1175/jcli-d-18-0449.1. [13] Cohen J L, Furtado J C, Barlow M A, et al. Arctic warming, increasing snow cover and widespread boreal winter cooling[J]. Environmental Research Letters, 2012, 7(1):014007.DOI:10.1088/1748-9326/7/1/014007. [14] Liu J P, Curry J A, Wang H J, et al. Impact of declining Arctic Sea ice on winter snowfall[J]. Proceeding of the National Academy of Sciences of the Ointed States of America, 2012, 109(11):6781-6783.DOI:10.1073/pnas.1114910109. [15] Mudryk L R, Kushner P J, Derksen C. Interpreting observed Northern Hemisphere snow trends with large ensembles of climate simulations[J]. Climate Dynamics, 2014, 43(1/2):345-359.DOI:10.1007/s00382-013-1954-y. [16] 周强, 王世新, 周艺, 等. MODIS亚像元积雪覆盖率提取方法[J]. 中国科学院研究生院学报, 2009, 26(3):383-388.DOI:10.7523/j.issn.2095-6134.2009.3.013. [17] Bulygina O N, Razuvaev V N, Korshunova N N. Changes in snow cover over Northern Eurasia in the last few decades[J]. Environmental Research Letters, 2009, 4(4):045026.DOI:10.1088/1748-9326/4/4/045026. [18] Groisman P Y, Karl T R, Knight R W. Observed impact of snow cover on the heat balance and the rise of continental spring temperatures[J]. Science, 1994, 263(5144):198-200.DOI:10.1126/science.2635144.198. [19] Cohen J, Pfeiffer K, Francis J A. Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States[J]. Nature Communications, 2018, 9:869.DOI:10.1038/s41467-018-02992-9. [20] Overland J, Francis J A, Hall R, et al. The melting Arctic and midlatitude weather patterns:are they connected?[J]. Journal of Climate, 2015, 28(20):7917-7932.DOI:10.1175/jcli-d-14-00822.1. [21] Cohen J, Zhang X, Francis J, et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather[J]. Nature Climate Change, 2020, 10(1):20-29.DOI:10.1038/s41558-019-0662-y. [22] Pithan F, Svensson G, Caballero R, et al. Role of air-mass transformations in exchange between the Arctic and mid-latitudes[J]. Nature Geoscience, 2018, 11(11):805-812.DOI:10.1038/s41561-018-0234-1. [23] Blackport R, Screen J A, van der Wiel K, et al. Minimal influence of reduced Arctic Sea ice on coincident cold winters in mid-latitudes[J]. Nature Climate Change, 2019, 9(9):697-704.DOI:10.1038/s41558-019-0551-4. [24] Yao Y, Luo D H, Dai A G, et al. Increased quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming. part I:insights from observational analyses[J]. Journal of Climate, 2017, 30(10):3549-3568.DOI:10.1175/jcli-d-16-0261.1. [25] Luo D H, Xiao Y Q, Yao Y, et al. Impact of Ural blocking on winter warm Arctic-cold Eurasian anomalies. part I:blocking-induced amplification[J]. Journal of Climate, 2016, 29(11):3925-3947.DOI:10.1175/jcli-d-15-0611.1. [26] Xie Y K, Wu G X, Liu Y M, et al. Eurasian cooling linked with Arctic Warming:insights from PV dynamics[J]. Journal of Climate, 2020, 33(7):2627-2644.DOI:10.1175/jcli-d-19-0073.1. [27] Screen J A, Blackport R. Is sea-ice-driven Eurasian cooling too weak in models?[J]. Nature Climate Change, 2019, 9(12):934-936.DOI:10.1038/s41558-019-0635-1. [28] Blackport R, Screen J A. Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves[J]. Science Advances, 2020, 6(8):eaay2880.DOI:10.1126/sciadv.aay2880. [29] Fyfe J C. Midlatitudes unaffected by sea ice loss[J]. Nature Climate Change, 2019, 9(9):649-650.DOI:10.1038/s41558-019-0560-3. [30] Screen J A, Deser C, Smith D M, et al. Consistency and discrepancy in the atmospheric response to Arctic Sea-ice loss across climate models[J]. Nature Geoscience, 2018, 11(3):155-163.DOI:10.1038/s41561-018-0059-y. [31] Overland J E, Dethloff K, Francis J A, et al. Nonlinear response of mid-latitude weather to the changing Arctic[J]. Nature Climate Change, 2016, 6(11):992-999.DOI:10.1038/nclimate3121. [32] Blackport R, Screen J A. Weakened evidence for mid-latitude impacts of Arctic warming[J]. Nature Climate Change, 2020, 10(12):1065-1066.DOI:10.1038/s41558-020-00954-y. [33] Mori M, Kosaka Y, Watanabe M, et al. A reconciled estimate of the influence of Arctic Sea-ice loss on recent Eurasian cooling[J]. Nature Climate Change, 2019, 9(2):123-129.DOI:10.1038/s41558-018-0379-3. [34] Wu Z H, Huang N E, Wallace J M, et al. On the time-varying trend in global-mean surface temperature[J]. Climate Dynamics, 2011, 37(3):759.DOI:10.1007/s00382-011-1128-8. [35] Feng J X, Wu Z H, Liu G S. Fast multidimensional ensemble empirical mode decomposition using a data compression technique[J]. Journal of Climate, 2014, 27(10):3492-3504.DOI:10.1175/jcli-d-13-00746.1. [36] Ji F, Wu Z H, Huang J P, et al. Evolution of land surface air temperature trend[J]. Nature Climate Change, 2014, 4(6):462-466.DOI:10.1038/jclimate2223. [37] Min S K, Zhang X B, Zwiers F W, et al. Human contribution to more-intense precipitation extremes[J]. Nature, 2011, 470(7334):378-381.DOI:10.1038/nature09763. [38] Chen C S, Jeng Y. Two-dimensional nonlinear geophysical data filtering using the multidimensional EEMD method[J]. Journal of Applied Geophysics, 2014, 111:256-270.DOI:10.1016/j.jappgeo.2014.10.015. [39] Zhang Z Y, Zha H Y. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J]. Journal of Shanghai University (English Edition), 2004, 8(4):406-424.DOI:10.1007/s11741-004-0051-1. [40] Wu Z H, Huang N E, Long S R, et al. On the trend, detrending, and variability of nonlinear and nonstationary time series[J]. Proceeding of the National Academy of Sciences of the United States of America, 2007, 104(38):14889-14894.DOI:10.1073/pnas.0701020104. [41] Flandrin P, Rilling G, Goncalves P. Empirical mode decomposition as a filter bank[J]. IEEE Signal Processing Letters, 2004, 11(2):112-114.DOI:10.1109/LSP.2003.821662. [42] Franzke C. Multi-scale analysis of teleconnection indices:Climate noise and nonlinear trend analysis[J]. Nonlinear Processes in Geophysics, 2009, 16(1):65-76.DOI:10.5194/npg-16-65-2009. [43] Inoue J, Hori M E, Takaya K. The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly[J]. Journal of Climate, 2012, 25(7):2561-2568.DOI:10.1175/jcli-d-11-00449.1. [44] Brown R D. Northern hemisphere snow cover variability and change, 1915-97[J]. Journal of Climate, 2000, 13(13):2339-2355.DOI:10.1175/1520-0442(2000)013<2339:nhscva>2.0.co;2. [45] Kosaka Y, Xie S P. Recent global-warming hiatus tied to equatorial Pacific surface cooling[J]. Nature, 2013, 501(7467):403-407.DOI:10.1038/nature12534. [46] Cohen J L, Furtado J C, Barlow M, et al. Asymmetric seasonal temperature trends[J]. Geophysical Research Letters, 2012, 39(4):L04705.DOI:10.1029/2011gl050582. [47] Luo D H, Xiao Y Q, Diao Y N, et al. Impact of Ural blocking on winter warm Arctic-cold Eurasian anomalies. part II:The link to the North Atlantic Oscillation[J]. Journal of Climate, 2016, 29(11):3949-3971.DOI:10.1175/jcli-d-15-0612.1. [48] Sun L T, Perlwitz J, Hoerling M. What caused the recent "Warm Arctic, Cold Continents" trend pattern in winter temperatures?[J]. Geophysical Research Letters, 2016, 43(10):5345-5352.DOI:10.1002/2016gl069024. [49] Zappa G, Ceppi P, Shepherd T G. Eurasian cooling in response to Arctic Sea-ice loss is not proved by maximum covariance analysis[J]. Nature Climate Change, 2021, 11(2):106-108.DOI:10.1038/s41558-020-00982.-8. [50] Barnes E A, Screen J A. The impact of Arctic warming on the midlatitude jet-stream:Can it? Has it? Will it?[J]. Wiley Interdisciplinary Reviews:Climate Change, 2015, 6(3):277-286.DOI:10.1002/wcc.337. [51] McCusker K E, Fyfe J C, Sigmond M. Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic Sea-ice loss[J]. Nature Geoscience, 2016, 9(11):838-842.DOI:10.1038/nge02820. |