[1] O’Dea C P. The compact steep-spectrum and gigahertz peaked-spectrum radio sources[J]. Publications of the Astronomical Society of the Pacific, 1998, 110(747): 493-532. DOI:10.1086/316162. [2] O’Dea C P, Saikia D J. Compact steep-spectrum and peaked-spectrum radio sources[J]. The Astronomy and Astrophysics Review, 2021, 29(1): 1-109. DOI:10.1007/s00159-021-00131-w. [3] 宋乔, 李庆康, 何香涛, 等. 活动星系核的偏振[J]. 北京师范大学学报(自然科学版),2006, 42(1): 61-65. DOI:10.3321/j.issn:0476-0301.2006.01.014. [4] 张海燕, 南仁东, 平劲松. BL Lac天体0735+178:类星体3C147 VLBA偏振观测的偏振校准源[J]. 北京师范大学学报(自然科学版), 2000, 36(4): 473. DOI:10.3321/j.issn:0476-0301.2000.04.008. [5] Hovatta T, Aller M F, Aller H D, et al. Mojave: monitoring of jets in active galactic nuclei with vlba experiments. Xi. spectral distributions[J]. The Astronomical Journal, 2014, 147(6): 143. DOI:10.1088/0004-6256/147/6/143. [6] Kosogorov N A, Kovalev Y Y, Perucho M, et al. Parsec-scale properties of the peculiar gigahertz-peaked spectrum quasar 0858-279[J]. Monthly Notices of the Royal Astronomical Society, 2021. DOI:10.1093/mnras/stab3579. [7] Pötzl F M, Lobanov A P, Ros E, et al. Probing the innermost regions of AGN jets and their magnetic fields with RadioAstron[J]. Astronomy & Astrophysics, 2021, 648: A82. DOI:10.1051/0004-6361/202039493. [8] Fomalont E B,Frey S,Paragi Z,et al. The VSOP 5 GHz continuum survey: the prelaunch VLBA observations[J]. The Astrophysical Journal Letters Supplement Series, 2000, 131(1): 95-183. DOI:10.1086/317368. [9] Jeyakumar S, Saikia D J, Rao A P, et al. Small-scale structures in compact steep-spectrum and GHz peaked spectrum radio sources[EB/OL]. arXiv: astro-ph/0008288. (2000-8-18) [2021-12-30]. https://arxiv.org/abs/astro-ph/0008288. [10] Cheng X P, An T, Frey S, et al. Compact bright radio-loud AGNs. III. A large VLBA survey at 43 GHz[J]. The Astrophysical Journal Letters Supplement Series, 2020, 247(2): 57. DOI:10.3847/1538-4365/ab791f. [11] Condon J J, Cotton W D, Greisen E W, et al. The NRAO VLA sky survey[J]. The Astronomical Journal, 1998, 115(5): 1693-1716. DOI:10.1086/300337. [12] Gardner F F, Whiteoak J B, Morris D. The linear polarization of radio sources I: observations at wavelengths of 6, 11, 18 and 21 cm[EB/OL]. (1975) [2021-12-30]. https://ui.adsabs.harvard.edu/abs/1975AuJPA..35….1G/abstract. [13] Tabara H, Inoue M. A catalogue of linear polarization of radio sources[J]. Astronomy and Astrophysics Supplement Series, 1980, 39: 379-393. [14] Napier P J, Bagri D S, Clark B G, et al. The very long baseline array[J]. Proceedings of the IEEE, 1994, 82(5): 658-672. DOI:10.1109/5.284733. [15] National Radio Astronomy Observatory. The AIPS Cook[EB/OL]. (2021-08-31) [2021-12-23]. http://www.aips.nrao.edu/cook.html. [16] Hutchison J M, Cawthorne T V, Gabuzda D C. Parsec-scale polarization of the jet in quasar 4C 71.07[J]. Monthly Notices of the Royal Astronomical Society, 2001, 321(3): 525-536. DOI:10.1046/j.1365-8711.2001.04097.x. [17] Asada K, Nakamura M, Inoue M, et al. Multi-frequency polarimetry toward S5 0836+710: a possible spine-sheath structure for the jet[J]. The Astrophysical Journal Letters, 2010, 720(1): 41-45. DOI:10.1088/0004-637x/720/1/41. [18] Zavala R T, Taylor G B. A view through faraday’s fog. II. Parsec-scale rotation measures in 40 active galactic nuclei[J]. The Astrophysical Journal Letters, 2004, 612(2): 749-779. DOI:10.1086/422741. [19] Liu Y, Jiang D R, Gu M F, et al. Multifrequency VLBA polarimetry of the high-redshift GPS quasar OQ172[J]. Monthly Notices of the Royal Astronomical Society, 2017, 468(3): 2699-2712. DOI:10.1093/mnras/stx617. [20] Dallacasa D, Orienti M, Fanti C, et al. A sample of small-sized compact steep-spectrum radio sources: VLBI images and VLA polarization at 5 GHz[J]. Monthly Notices of the Royal Astronomical Society, 2013, 433(1): 147-161. DOI:10.1093/mnras/stt710. |