[1] Guo Q H, Huang D F, Nordholm S, et al. Iterative frequency domain equalization with generalized approximate message passing[J]. IEEE Signal Processing Letters, 2013, 20(6):559-562. DOI:10.1109/LSP.2013.2256783. [2] Rangan S, Schniter P, Fletcher A K. Vector approximate message passing[C]//2017 IEEE International Symposium on Information Theory. June 25-30, 2017, Aachen, Germany. IEEE, 2017:1588-1592. DOI:10.1109/ISIT.2017.8006797. [3] Şahin S, Cipriano A M, Poulliat C, et al. Iterative equalization with decision feedback based on expectation propagation[J]. IEEE Transactions on Communications, 2018, 66(10):4473-4487. DOI:10.1109/TCOMM.2018.2843760. [4] Li D, Wu Y B, Tao J, et al. Performance analysis and improvement for VAMP soft frequency-domain equalizers[J]. IEEE Access, 2019, 7:42495-42506. DOI:10.1109/ACCESS.2019.2907326. [5] Li D, Wu Y B, Tao J, et al. Near-optimal self-iterative VAMP equalization enabled by Hadamard-Haar random precoding[J]. IEEE Communications Letters, 2020, 24(6):1249-1253. DOI:10.1109/LCOMM.2020.2981073. [6] Tuchler M, Koetter R, Singer A C. Turbo equalization:principles and new results[J]. IEEE Transactions on Communications, 2002, 50(5):754-767. DOI:10.1109/TCOMM.2002.1006557. [7] Tuchler M, Singer A C, Koetter R. Minimum mean squared error equalization using a priori information[J]. IEEE Transactions on Signal Processing, 2002, 50(3):673-683. DOI:10.1109/78.984761. [8] Wu X S, Wu Y B, Zhu M, et al. The probability density distribution of the a posteriori symbols and probabilistic shaping capacity analysis in underwater acoustic communication[J]. Chinese Journal of Acoustics, 2021, 40(3):362-377. DOI:10.15949/j.cnki.0217-9776.2021.03.004. [9] Forney G, Gallager R, Lang G, et al. Efficient modulation for band-limited channels[J]. IEEE Journal on Selected Areas in Communications, 1984, 2(5):632-647. DOI:10.1109/JSAC.1984.1146101. [10] Steiner F, Boecherer G. Comparison of geometric and probabilistic shaping with application to ATSC 3.0[C]//SCC 2017; 11th International ITG Conference on Systems, Communications and Coding. February 6-9, 2017, Hamburg, Germany. VDE, 2017:1-6. [11] Fehenberger T, Alvarado A, Böcherer G, et al. On probabilistic shaping of quadrature amplitude modulation for the nonlinear fiber channel[J]. Journal of Lightwave Technology, 2016, 34(21):5063-5073. DOI:10.1109/JLT.2016.2594271. [12] Böcherer G, Steiner F, Schulte P. Bandwidth efficient and rate-matched low-density parity-check coded modulation[J]. IEEE Transactions on Communications, 2015, 63(12):4651-4665. DOI:10.1109/TCOMM.2015.2494016. [13] Hong X J, Fei C, Zhang G W, et al. Discrete multitone transmission for underwater optical wireless communication system using probabilistic constellation shaping to approach channel capacity limit[J]. Optics Letters, 2019, 44(3):558-561. DOI:10.1364/OL.44.000558. [14] Yankov M, Forchhammer S, Larsen K J, et al. Rate-adaptive constellation shaping for near-capacity achieving turbo coded BICM[C]//2014 IEEE International Conference on Communications. June 10-14, 2014, Sydney, NSW, Australia. IEEE, 2014:2112-2117. DOI:10.1109/ICC.2014.6883635. [15] Schulte P, Böcherer G. Constant composition distribution matching[J]. IEEE Transactions on Information Theory, 2016, 62(1):430-434. DOI:10.1109/TIT.2015.2499181. [16] Buchali F, Steiner F, Böcherer G, et al. Rate adaptation and reach increase by probabilistically shaped 64-QAM:an experimental demonstration[J]. Journal of Lightwave Technology, 2016, 34(7):1599-1609. DOI:10.1109/JLT.2015.2510034. |