[1] 王亚坤, 杨凯飞, 张婕, 等. 卫星在轨故障案例与人工智能故障诊断[J]. 中国空间科学技术, 2022, 42(1):16-29. DOI:10.16708/j.cnki.1000-758X.2022.0002. [2] Lepot M, Aubin J B, Clemens F. Interpolation in time series:an introductive overview of existing methods, their performance criteria and uncertainty assessment[J]. Water, 2017, 9(10):796. DOI:10.3390/w9100796. [3] Sibson R. A brief description of natural neighbour interpolation[M/OL]//John W & Sons. Interpreting Multivariate Data. In:Barnett, V., Ed. New York, 1981:21-36[2022-03-13]. https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1553046. [4] Gnauck A. Interpolation and approximation of water quality time series and process identification[J]. Analytical and Bioanalytical Chemistry, 2004, 380(3):484-492. DOI:10.1007/s00216-004-2799-3. [5] Knotters M, Heuvelink G B M. A disposition of interpolation techniques[R/OL]. Wageningen, Holland:Wettelijke Onderzoekstaken Natuur & Milieu, 2010[2022-03-13]. https://edepot.wur.nl/139504. [6] Dutta R S C, Minocha S. On the phase interpolation problem:a brief review and some new results[J]. Sadhana, 1991, 16(3):225-239. DOI:10.1007/BF02812044. [7] Carrizosa E, Olivares N A V, Ramírez C P. Time series interpolation via global optimization of moments fitting[J]. European Journal of Operational Research, 2013, 230(1):97-112. DOI:10.1016/j.ejor.2013.04.008. [8] Chen Y, Kopp G A, Surry D. Interpolation of wind-induced pressure time series with an artificial neural network[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(6):589-615. DOI:10.1016/S0167-6105(02)00155-1. [9] Kulesh M, Holschneider M, Kurennaya K. Adaptive metrics in the nearest neighbours method[J]. Physica D:Nonlinear Phenomena, 2008, 237(3):283-291. DOI:10.1016/j.physd.2007.08.019. [10] Lütkepohl H. New Introduction to Multiple Time Series Analysis[M]. Berlin, Heidelberg:Springer Berlin Heidelberg, 2005. DOI:10.1007/978-3-540-27752-1. [11] 张晓琴, 王敏. 基于主成分分析的成分数据缺失值插补法[J]. 应用概率统计, 2016, 32(1):101-110. DOI:10.3969/j.issn.1001-4268.2016.01.007. [12] Salakhutdinov R, Mnih A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo[C]//ICML'08:Proceedings of the 25th international conference on Machine learning. 2008:880-887. DOI:10.1145/1390156.1390267. [13] Babu C N, Sure P. Partitioning and interpolation based hybrid ARIMA-ANN model for time series forecasting[J]. Sādhanā, 2016, 41(7):695-706. DOI:10.1007/s12046-016-0508-5. [14] Hundman K, Constantinou V, Laporte C, et al. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding[C]//KDD'18:Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018:387-395. DOI:10.1145/3219819.3219845. [15] 王少影, 张宇, 孟宪红, 等. 机器学习算法对涡动相关缺失通量数据的插补研究[J]. 高原气象, 2020, 39(6):1348-1360. DOI:10.7522/j.issn.1000-0534.2019.00142. [16] Raubitzek S, Neubauer T. A fractal interpolation approach to improve neural network predictions for difficult time series data[J]. Expert Systems With Applications, 2021, 169:114474. DOI:10.1016/j.eswa.2020.114474. [17] Bai S J, Kolter J Z, Koltun V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. arXiv:1803.01271v2[cs.LG]. (2018-04-19)[2022-03-13]. https://arxiv.org/abs/1803.01271. [18] Steinmetz C J, Reiss J D. Efficient neural networks for real-time analog audio effect modeling[EB/OL]. arXiv:2102.06200v1[eess.AS]. (2021-02-11)[2022-03-13]. https://arxiv.org/abs/2102.06200. [19] Alqahtani S, Mishra A, Diab M. Efficient convolutional neural networks for diacritic restoration[EB/OL]. 2019:arXiv:1912.06900[cs.CL]. (2019-12-14)[2022-03-13]. https://arxiv.org/abs/1912.06900. [20] Dai W, Zhang J S, Gao Y M, et al. Formant tracking using dilated convolutional networks through dense connection with gating mechanism[C]//Interspeech 2020. ISCA:ISCA, 2020:150-154. DOI:10.21437/interspeech.2020-1804. [21] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018:7132-7141. DOI:10.1109/CVPR.2018.00745. [22] 何利健, 张锐, 陈文卿. 基于SE-TCN网络模型的太阳电池阵温度异常检测[J]. 上海航天(中英文), 2021, 38(5):8-16. DOI:10.19328/j.cnki.2096-8655.2021.05.002. [23] Chen W Q, Zhang R, Liu H, et al. A novel method for solar panel temperature determination based on a wavelet neural network and Hammerstein-Wiener model[J]. Advances in Space Research, 2020, 66(8):2035-2046. DOI:10.1016/j.asr.2020.07.002. [24] Brownlee J. Deep learning for time series forecasting:predict the future with MLPs, CNNs and LSTMs in Python[M/OL]. Machine Learning Mastery, 2018[2022-03-13]. https://machinelearningmastery.com/deep-learning-for-time-series-forecasting/. [25] Beale M H, Hagan M T, Demuth H B. Deep learning toolboxTM reference[M/OL]. MATLAB (r) R2021a The MathWorks, Inc, 2021[2022-03-13]. https://ww2.mathworks.cn/help/pdf_doc/deeplearning/index.html. |