[1] Mastro P, Serio C, Masiello G, et al. The multiple aperture SAR interferometry (MAI) technique for the detection of large ground displacement dynamics: an overview[J]. Remote Sensing, 2020, 12(7): 1189. DOI:10.3390/rs12071189. [2] 林世明, 张毅, 王吉利, 等. 星载双基InSAR系统中的电离层色散效应分析与校正[J]. 中国科学院大学学报, 2021, 38(6): 809-816. DOI:10.7523/j.issn.2095-6134.2021.06.011. [3] Hu B, Li H, Zhang X F, et al. Oil and gas mining deformation monitoring and assessments of disaster: using interferometric synthetic aperture radar technology[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(2): 108-134. DOI:10.1109/MGRS.2020.2989239. [4] 马娇,董勇伟,李原,等.多旋翼无人机微多普勒特性分析与特征提取[J].中国科学院大学学报, 2019, 36(2): 235-243. DOI:10.7523/j.issn.2095-6134.2019.02.011. [5] Moreira L, Castro F, Góes J A, et al. A drone-borne multiband DInSAR: results and applications[C]//2019 IEEE Radar Conference (RadarConf). April 22-26, 2019, Boston, MA, USA. IEEE, 2019: 1-6. DOI:10.1109/RADAR.2019.8835653. [6] Frey O, Werner C L, Coscione R. Car-borne and UAV-borne mobile mapping of surface displacements with a compact repeat-pass interferometric SAR system at L-band[C]//IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. July 28-August 2, 2019, Yokohama, Japan. IEEE, 2019: 274-277. DOI:10.1109/IGARSS.2019.8897827. [7] Remy M A, de Macedo K A C, Moreira J R. The first UAV-based P- and X-band interferometric SAR system[C]//2012 IEEE International Geoscience and Remote Sensing Symposium. July 22-27, 2012, Munich, Germany. IEEE, 2012: 5041-5044. DOI:10.1109/IGARSS.2012.6352478. [8] Luebeck D, Wimmer C, Moreira L F, et al. Drone-borne differential SAR interferometry[J]. Remote Sensing, 2020, 12(5): 778. DOI:10.3390/rs12050778. [9] Lu H, Suo Z Y, Li Z F, et al. InSAR baseline estimation for Gaofen-3 real-time DEM generation[J]. Sensors(Basel, Switzerland), 2018, 18(7): 2152. DOI:10.3390/s18072152. [10] 靳国旺, 吴一戎, 向茂生, 等. 基于区域网平差的InSAR基线估计方法[J]. 测绘学报, 2011, 40(5): 616-622, 627. [11] Xiong X, Jin G W, Zhang H M, et al. Baseline estimation with block adjustment considering ground control point errors for multi-pass dual-antenna airborne INSAR[C]//2016 IEEE International Geoscience and Remote Sensing Symposium. July 10-15, 2016, Beijing, China. IEEE, 2016: 6460-6463. DOI:10.1109/IGARSS.2016.7730688. [12] Singh K, Stussi N, Keong K L, et al. Baseline estimation in interferometric SAR[C]//IGARSS'97.1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing-A Scientific Vision for Sustainable Development. August 3-8, 1997, Singapore. IEEE, 1997: 454-456. DOI:10.1109/IGARSS.1997.615913. [13] 唐晓青, 向茂生, 吴一戎. 一种改进的基于干涉相位的基线估计方法[J]. 电子与信息学报, 2008, 30(12): 2795-2799. DOI: 10.3724/SP.J.1146.2007.01974. [14] 徐华平, 朱玲凤, 刘向华, 等. 一种基于干涉条纹频率的星载InSAR基线估计新方法[J]. 电子学报, 2011, 39(9): 2212-2216, 封3. [15] Wang Y, Xu H P, Li S, et al. An improved InSAR baseline estimation based on interferometric fringe frequency[C]//2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. July 11-16, 2021, Brussels, Belgium. IEEE, 2021: 4296-4299. DOI:10.1109/IGARSS47720.2021.9554863. [16] 董小桐, 韩春明, 岳昔娟, 等. 一种机载重轨InSAR高精度三维定位方法[J]. 中国科学院大学学报, 2019, 36(6): 844-850. DOI:10.7523/j.issn.2095-6134.2019.06.017. [17] 裴怀宁, 马德宝, 郑芳. 基于平地干涉相位周期的基线估计方法[J]. 现代雷达, 2005, 27(11): 48-50. DOI:10.16592/j.cnki.1004-7859.2005.11.013. [18] 靳国旺, 徐青, 朱彩英, 等. 利用平地干涉相位进行INSAR初始基线估计[J]. 测绘科学技术学报. 2006, 23(4): 278-280, 283. Doi:10.3969/j.issn.1673-6338.2006.04.013. |