[1] Patankar S V. Airflow and cooling in a data center[J]. Journal of Heat Transfer, 2010, 132(7): 271-291. DOI:10.1115/1.4000703. [2] Dayarathna M, Wen Y G, Fan R. Data center energy consumption modeling: a survey[J]. IEEE Communications Surveys & Tutorials, 2015, 18(1): 732-794. DOI:10.1109/COMST.2015.2481183. [3] 程亨达, 陈焕新, 邵双全, 等. 数据中心冷却系统的综合COP评价[J]. 制冷学报, 2020, 41(6): 77-84. DOI:10.3969/j.issn.0253-4339.2020.06.077. [4] Maydanik Y F. Loop heat pipes[J]. Applied Thermal Engineering, 2005, 25(5/6): 635-657. DOI:10.1016/j.applthermaleng.2004.07.010. [5] Tang H, Tang Y, Wan Z P, et al. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling[J]. Applied Energy, 2018, 223: 383-400. DOI:10.1016/j.apenergy.2018.04.072. [6] Gerasimov Y, Maydanik Y F. Heat pipe[Z]. USSR Inventors Certificate 449213, 1974. [7] Gerasimov Y, Maidanik Y F, Shchegolev G T, et al. Low-temperature heat pipes with seperate channels for vapor and liquid[J]. Journal of Engineering Physics, 1975, 28: 683-685. DOI:10.1007/BF00867371. [8] 贾月, 唐大伟. 一种热管散热器对大功率LED散热效果的研究[J]. 中国科学院研究生院学报, 2012, 29(1): 27-31. DOI:10.7523/j.issn.2095-6134.2012.1.004. [9] Chernysheva M A, Yushakova S I, Maydanik Y F. Copper-water loop heat pipes for energy-efficient cooling systems of supercomputers[J]. Energy, 2014, 69: 534-542. DOI:10.1016/j.energy.2014.03.048. [10] Zhou G H, Li J, Jia Z Z. Power-saving exploration for high-end ultra-slim laptop computers with miniature loop heat pipe cooling module[J]. Applied Energy, 2019, 239: 859-875. DOI:10.1016/j.apenergy.2019.01.258. [11] Vasiliev L, Lossouarn D, Romestant C, et al. Loop heat pipe for cooling of high-power electronic components[J]. International Journal of Heat and Mass Transfer, 2009, 52(1/2): 301-308. DOI:10.1016/j.ijheatmasstransfer.2008.06.016. [12] Bai L Z, Guo J H, Lin G P, et al. Steady-state modeling and analysis of a loop heat pipe under gravity-assisted operation[J]. Applied Thermal Engineering, 2015, 83: 88-97. DOI:10.1016/j.applthermaleng.2015.03.014. [13] Nakamura K, Odagiri K, Nagano H. Study on a loop heat pipe for a long-distance heat transport under anti-gravity condition[J]. Applied Thermal Engineering, 2016, 107: 167-174. DOI:10.1016/j.applthermaleng.2016.06.162. [14] Zhou L, Qu Z G, Chen G, et al. One-dimensional numerical study for loop heat pipe with two-phase heat leak model[J]. International Journal of Thermal Sciences, 2019, 137: 467-481. DOI:10.1016/j.ijthermalsci.2018.12.019. [15] Adoni A A, Ambirajan A, Jasvanth V S, et al. Theoretical and experimental studies on an ammonia-based loop heat pipe with a flat evaporator[J]. IEEE Transactions on Components and Packaging Technologies, 2010, 33(2): 478-87. DOI:10.1109/TCAPT.2010.2042056. [16] Guo Y D, Lin G P, Bai L Z, et al. Experimental study on the supercritical startup of cryogenic loop heat pipes with redundancy design[J]. Energy Conversion and Management, 2016, 118: 353-363. DOI:10.1016/j.enconman.2016.04.022. [17] Li J, Zhou G H, Tian T, et al. A new cooling strategy for edge computing servers using compact looped heat pipe[J]. Applied Thermal Engineering, 2021, 187:116599. DOI:10.1016/j.applthermaleng,2021.116599. |