[1] 方芳, 吴明阁. 全球低轨卫星星座发展研究[J]. 飞航导弹, 2020(5): 88-92, 95. DOI:10.16338/j.issn.1009-1319.20190258. [2] 韩锐, 张磊, 刘珊杉. 典型低轨通信星座系统的确定性干扰分析[J]. 数字通信世界, 2020(9): 60-62. DOI:10.3969/J.ISSN.1672-7274.2020.09.022. [3] Sharma S K, Chatzinotas S, Ottersten B. Transmit beamforming for spectral coexistence of satellite and terrestrial networks[C]//8th International Conference on Cognitive Radio Oriented Wireless Networks. July 8-10, 2013, Washington, DC, USA. IEEE, 2013:275-281. DOI:10.1109/CROWNCom.2013.6636830. [4] Zheng Y H, Sun S L, Rong B, et al. Traffic aware power allocation and frequency reuse for green LTE-A heterogeneous networks[C]//2015 IEEE International Conference on Communications. June 8-12, 2015, London, UK. IEEE, 2015:3167-3172. DOI:10.1109/ICC.2015.7248811. [5] Reed A G, Posen M C J. Interference in the fixed satellite service bands between the feeder-links of networks using nongeostationary satellites and network using geostationary satellites[C]//3rd European Conference on Satellite Communications-ECSC-3, 1993. November 2-4, 1993, Manchester, UK. IET, 1993: 251-256. [6] Sharma S K, Chatzinotas S, Ottersten B. Cognitive radio techniques for satellite communication systems[C]//2013 IEEE 78th Vehicular Technology Conference. September 2-5, 2013, Las Vegas, NV, USA. IEEE, 2013:1-5. DOI:10.1109/VTCFall.2013.6692139. [7] 张泓湜, 蒋伯峰. 基于空间隔离的低轨卫星系统频谱共享方法[J]. 北京航空航天大学学报, 2018, 44(9): 1909-1917. DOI:10.13700/j.bh.1001-5965.2017.0732. [8] ITU Radiocommunication (ITU-R). Simulation methodologies for determining statistics of short-term interference between co-frequency, codirectional non-geostationary-satellite orbit fixed-satellite service systems in circular orbits and other non-geostationary fixed-satellite service systems in circular orbits or geostationary-satellite orbit fixed-satellite service networks[S/OL]. (2003-10-08)[2021-12-18]. https://www.itu.int/rec/R-REC-S.1325-3-200310-I/en.html. [9] ITU Radiocommunication (ITU-R). Interference mitigation techniques to facilitate coordination between non-geostationary-satellite orbit mobile-satellite service feeder links and geostationary satellite orbit fixed-satellite service networks in the bands 19.3~19.7 GHz and 29.1~29.5 GHz[S/OL]. (1999-11-30)[2021-12-18]. https://www.itu.int/rec/R-REC-S.1419-0-199911-I/en.html. [10] ITU Radiocommunication (ITU-R). Analytical method to calculate short-term visibility and interference statistics for non-geostationary satellite orbit satellites as seen from a point on the earth’s surface[S/OL]. (2002-03-11)[2021-12-18]. https://www.itu.int/rec/R-REC-S.1257-3-200203-I/en.html. [11] Sharma S K, Chatzinotas S, Ottersten B. In-line interference mitigation techniques for spectral coexistence of GEO and NGEO satellites[J]. International Journal of Satellite Communications and Networking, 2016, 34(1): 11-39. DOI:10.1002/sat.1090. [12] ITU Radiocommunication (ITU-R). Radio Regulations[S/OL]. (2020-08-19)[2021-12-18]. https://www.itu.int/pub/R-REG-RR-2020.html. [13] Park I, Seo C, Ku H. Sidelobe suppression beamforming using tapered amplitude distribution for a microwave power transfer system with a planar array antenna[J]. Journal of Electromagnetic Engineering and Science, 2022, 22(1): 64-73. DOI:10.26866/jees.2022.1.r.62. [14] ITU Radiocommunication (ITU-R). Functional description to be used in developing software tools for determining conformity of non-geostationary-satellite orbit fixed-satellite service systems or networks with limits contained in Article 22 of the Radio Regulations[S/OL]. (2018-01-15)[2021-12-18]. https://www.itu.int/rec/R-REC-S.1503-3-201801-I/en.html. [15] Frost O L. An algorithm for linearly constrained adaptive array processing[J]. Proceedings of the IEEE, 1972, 60(8): 926-935. DOI:10.1109/PROC.1972.8817. [16] ITU Radiocommunication (ITU-R). Reference FSS earth-station radiation patterns for use in interference assessment involving non-GSO satellites in frequency bands between 10.7 GHz and 30 GHz[S/OL]. (2001-02-20)[2021-12-18]. https://www.itu.int/rec/R-REC-S.1428-1-200102-I/en.html. |