[1] Jucker T, Caspersen J, Chave J, et al. Allometric equations for integrating remote sensing imagery into forest monitoring programmes[J]. Global Change Biology, 2017, 23(1): 177-190. DOI:10.1111/gcb.13388. [2] Chen Q, Vaglio Laurin G, Valentini R. Uncertainty of remotely sensed aboveground biomass over an African tropical forest: propagating errors from trees to plots to pixels[J]. Remote Sensing of Environment, 2015, 160: 134-143. DOI:10.1016/j.rse.2015.01.009. [3] Keller M, Palace M, Hurtt G. Biomass estimation in the Tapajos National Forest, Brazil: examination of sampling and allometric uncertainties[J]. Forest Ecology and Management, 2001, 154(3): 371-382. DOI:10.1016/S0378-1127(01)00509-6. [4] Huang H B, Liu C X, Wang X Y, et al. Integration of multi-resource remotely sensed data and allometric models for forest aboveground biomass estimation in China[J]. Remote Sensing of Environment, 2019, 221: 225-234. DOI:10.1016/j.rse.2018.11.017. [5] Fayolle A, Doucet J L, Gillet J F, et al. Tree allometry in Central Africa: testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks[J]. Forest Ecology and Management, 2013, 305: 29-37. DOI:10.1016/j.foreco.2013.05.036. [6] Duncanson L, Rourke O, Dubayah R. Small sample sizes yield biased allometric equations in temperate forests[J]. Scientific Reports, 2015, 5: 17153. DOI:10.1038/srep17153. [7] Fischer F J, Maréchaux I, Chave J. Improving plant allometry by fusing forest models and remote sensing[J]. New Phytologist, 2019, 223(3): 1159-1165. DOI:10.1111/nph.15810. [8] Djomo A N, Chimi C D. Tree allometric equations for estimation of above, below and total biomass in a tropical moist forest: case study with application to remote sensing[J]. Forest Ecology and Management, 2017, 391: 184-193. DOI:10.1016/j.foreco.2017.02.022. [9] Lai J S, Yang B, Lin D M, et al. The allometry of coarse root biomass: log-transformed linear regression or nonlinear regression?[J]. PLoS One, 2013, 8(10): e77007. DOI:10.1371/journal.pone.0077007. [10] 王冬至, 张冬燕, 蒋凤玲, 等. 三个主要树种单木生物量及其器官分配模型[J]. 自然资源学报, 2018, 33(8): 1390-1401. DOI:10.31497/zrzyxb.20170684. [11] 车日桃. 华北落叶松单木生物量模型研究[J]. 山西林业科技, 2017, 46(1): 35-36. DOI:10.3969/j.issn.1007-726X.2017.01.013. [12] 王天博. 福建将乐马尾松人工林单木生物量模型研究[D]. 北京: 北京林业大学, 2012. [13] 施政, 刘建, 蓝肖, 等. 广西田林马尾松人工林单木生物量的回归模型分析[J]. 广西林业科学, 2009, 38(3): 167-170. DOI:10.19692/j.cnki.gfs.2009.03.010. [14] 董利虎, 李凤日, 宋玉文. 东北林区4个天然针叶树种单木生物量模型误差结构及可加性模型[J]. 应用生态学报, 2015, 26(3): 704-714. DOI:10.13287/j.1001-9332.20150106.011. [15] 何潇,李海奎.广东省木荷单木生物量模型的建立[J].安徽农业大学学报, 2018, 45(6): 1071-1076. DOI:10.13610/j.cnki.1672-352x.20190102.015. [16] 李建强. 内蒙古大青山白桦单木生物量模型及碳储量的研究[D]. 呼和浩特: 内蒙古农业大学, 2010. [17] 薛春泉, 徐期瑚, 林丽平, 等. 广东主要乡土阔叶树种含年龄和胸径的单木生物量模型[J]. 林业科学, 2019, 55(2): 97-108. DOI:10.11707/j.1001-7488.20190210. [18] 国家林业局. 立木生物量模型及碳计量参数—马尾松: LY/T 2263—2014[S]. 北京: 中国标准出版社, 2014. [19] 国家林业局. 立木生物量模型及碳计量参数—杉木: LY/T 2264—2014[S]. 北京: 中国标准出版社, 2014. [20] 国家林业局. 立木生物量模型及碳计量参数—木荷: LY/T 2660—2016[S]. 北京: 中国标准出版社, 2016. [21] 国家林业局. 立木生物量模型及碳计量参数—枫香: LY/T 2661—2016[S]. 北京: 中国标准出版社, 2016. [22] 付威波, 彭晚霞, 宋同清, 等. 不同林龄尾巨桉人工林的生物量及其分配特征[J]. 生态学报, 2014, 34(18): 5234-5241. DOI:10.5846/stxb201405090930. [23] 胥辉, 文仕军. 干热河谷赤桉生物量模型的研究[J]. 西南林学院学报, 2000, 20(4): 191-195, 212. DOI:10.3969/j.issn.2095-1914.2000.04.001. [24] 赵雪丽. 纸浆材桉树人工林生物量模型研究[D]. 广州: 华南农业大学, 2018. [25] 施福军, 覃丽群, 吴敏, 等. 15年生桉树中大径材人工林生物量与生产力研究[J]. 安徽农业科学, 2019, 47(6): 113-116. DOI:10.3969/j.issn.0517-6611.2019.06.035. [26] 向仰州. 海南桉树人工林生态系统生物量和碳储量时空格局[D]. 北京: 中国林业科学研究院, 2012. [27] 石联运. 闽南山地尾巨桉DH3229与红锥不同比例混交的林分生长分析[J]. 林业勘察设计, 2021(4): 53-55. [28] 杨民胜, 洪长福, 姚庆端, 等. 开拓创新 科学经营 推进桉树可持续发展: 浅析福建漳州发展桉树实践[J]. 桉树科技, 2014, 31(3): 49-53. DOI:10.13987/j.cnki.askj.2014.03.010. [29] 潘嘉雯, 林娜, 何茜, 等. 我国3个桉树人工林种植区生产力影响因素[J]. 生态学报, 2018, 38(19): 6932-6940. DOI:10.5846/stxb201708111444. [30] 闫晶, 罗云建, 郑德福, 等. 桉树生物量估算差异的源解析[J]. 林业科学, 2014, 50(2): 92-98. DOI:10.11707/j.1001-7488.20140214. [31] Novotný J, Navrátilová B, Janoutová R, et al. Influence of site-specific conditions on estimation of forest above ground biomass from airborne laser scanning[J]. Forests, 2020, 11(3): 268. DOI:10.3390/f11030268. [32] Zhao M F, Tian S H, Zhu Y, et al. Allometric relationships, functional differentiations, and scaling of growth rates across 151 tree species in China[J]. Ecosphere, 2021, 12(5): e03522. DOI:10.1002/ecs2.3522. [33] Ren Y, Zhang C, Zuo S D, et al. Scaling up of biomass simulation for Eucalyptus plantations based on landsenses ecology[J]. International Journal of Sustainable Development & World Ecology, 2017, 24(2): 135-148. DOI:10.1080/13504509.2016.1228017. [34] 孟宪宇. 测树学[M]. 3版. 北京: 中国林业出版社, 2006. [35] Kankare V, Räty M, Yu X W, et al. Single tree biomass modelling using airborne laser scanning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 85: 66-73. DOI:10.1016/j.isprsjprs.2013.08.008. [36] Dimobe K, Goetze D, Ouédraogo A, et al. Aboveground biomass allometric equations and carbon content of the shea butter tree (Vitellaria Paradoxa C.F. Gaertn., Sapotaceae) components in Sudanian savannas (West Africa)[J]. Agroforestry Systems, 2019, 93(3): 1119-1132. DOI:10.1007/s10457-018-0213-y. [37] 陈志林, 李国兴, 侯晓巍, 等. 青海省祁连圆柏天然林单木生物量模型构建[J]. 西北林学院学报, 2021, 36(1): 204-207. DOI:10.3969/j.issn.1001-7461.2021.01.29. [38] 王冬至, 张冬燕, 张志东, 等. 基于非线性混合模型的针阔混交林树高与胸径关系[J]. 林业科学, 2016, 52(1): 30-36. DOI:10.11707/j.1001-7488.20160104. [39] 卢军, 张会儒, 雷相东, 等. 长白山云冷杉针阔混交林幼树树高: 胸径模型[J]. 北京林业大学学报, 2015, 37(11): 10-25. DOI:10.13332/j.1000-1522.20140429. [40] Forrester D I, Tachauer I H H, Annighoefer P, et al. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate[J]. Forest Ecology and Management, 2017, 396: 160-175. DOI:10.1016/j.foreco.2017.04.011. [41] 陈小花, 陈宗铸, 雷金睿, 等. 海南岛3种人工林树种地上生物量分配特征及区域差异[J].热带作物学报, 2019, 40(4): 815-821. DOI:10.3969/j.issn.1000-2561. 2019.04.028. [42] 吕小燕. 连栽桉树人工林生态系统磷素储量及其分布特征[D]. 南宁: 广西大学, 2019. [43] 张琼, 洪伟, 吴承祯, 等. 不同桉树人工林生物量与生产力的比较分析[J]. 福建林学院学报, 2006, 26(3): 218-223. DOI:10.13324/j.cnki.jfcf.2006.03.007. [44] 甘桂春, 王伟, 王晓宁, 等. 贵州南部桉树人工林生物量及碳储量研究[J]. 林业调查规划, 2016, 41(2): 34-37, 42. DOI:10.3969/j.issn.1671-3168.2016.02.007. [45] 张清, 陆素娟, 李品荣, 等. 半干旱石漠化地区直干桉生物量及含水率特征分析[J]. 西部林业科学, 2019, 48(4): 126-131. DOI:10.16473/j.cnki.xblykx1972.2019. 04.020. [46] 张俊. 兴安落叶松人工林群落结构、生物量与碳储量研究[D]. 北京: 北京林业大学, 2008. [47] 黄从德, 张健, 杨万勤, 等. 四川省及重庆地区森林植被碳储量动态[J]. 生态学报, 2008, 28(3): 966-975. DOI:10.3321/j.issn:1000-0933.2008.03.008. [48] Ketterings Q M, Coe R, van Noordwijk M, et al. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests[J]. Forest Ecology and Management, 2001, 146(1/2/3): 199-209. DOI:10.1016/s0378-1127(00)00460-6. [49] Helmisaari H S, Derome J, Nöjd P, et al. Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands[J]. Tree Physiology, 2007, 27(10): 1493-1504. DOI:10.1093/treephys/27.10.1493. [50] Luo Y J, Wang X K, Zhang X Q, et al. Root:shoot ratios across China’s forests: forest type and climatic effects[J]. Forest Ecology and Management, 2012, 269: 19-25. DOI:10.1016/j.foreco.2012.01.005. [51] Peri P L, Gargaglione V, Pastur G M. Dynamics of above-and below-ground biomass and nutrient accumulation in an age sequence of Nothofagus Antarctica forest of Southern Patagonia[J]. Forest Ecology and Management, 2006, 233(1): 85-99. DOI:10.1016/j.foreco.2006.06.009. [52] Vanninen P, Ylitalo H, Sievänen R, et al. Effects of age and site quality on the distribution of biomass in Scots pine (Pinus sylvestris L.)[J]. Trees, 1996, 10(4): 231-238. DOI:10.1007/BF02185674. [53] 刘彩霞. 绿洲农田防护林单株新疆杨生物量及其根冠比变化分析[J]. 农业技术与装备, 2021(9): 120-121. DOI:10.3969/j.issn.1673-887x.2021.09.052. [54] Mokany K, Raison R J, Prokushkin A S. Critical analysis of root: shoot ratios in terrestrial biomes[J]. Global Change Biology, 2006, 12(1): 84-96. DOI:10.1111/j.1365-2486.2005.001043.x. [55] 郭炳桥, 钟全林, 马玉珠, 等. 林分和气候因子对中国天然林根冠比的影响[J]. 应用与环境生物学报, 2016, 22(2): 326-331. DOI:10.3724/sp.j.1145.2015.09024. [56] 黄兴召, 陶彩蝶, 李敬斋, 等. 杉木人工林根冠比与气候和林分因子的关联分析[J]. 浙江农林大学学报, 2018, 35(4): 642-648. DOI:10.11833/j.issn.2095-0756.2018.04.009. [57] Peichl M, Arain M A. Allometry and partitioning of above-and belowground tree biomass in an age-sequence of white pine forests[J]. Forest Ecology and Management, 2007, 253(1/2/3): 68-80. DOI:10.1016/j.foreco.2007.07.003. [58] 张林, 黄永, 罗天祥, 等. 林分各器官生物量随林龄的变化规律: 以杉木、马尾松人工林为例[J]. 中国科学院研究生院学报, 2005, 22(2): 170-178. DOI:10.7523/j.issn.2095-6134.2005.02.008. [59] Levy P E, Hale S E, Nicoll B C. Biomass expansion factors and root: shoot ratios for coniferous tree species in Great Britain[J]. Forestry: an International Journal of Forest Research, 2004, 77(5): 421-430. DOI:10.1093/forestry/77.5.421. [60] Beets P N, Pearce S H, Oliver G R, et al. Root/shoot ratios for deriving below-ground biomass of Pinus radiata stands[EB/OL]. (2007-04-18)[2022-05-01].https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.705.6478 &rep=rep1&type=pdf. [61] Waring B G, Powers J S. Overlooking what is underground: root: shoot ratios and coarse root allometric equations for tropical forests[J]. Forest Ecology and Management, 2017, 385: 10-15. DOI:10.1016/j.foreco.2016.11.007. [62] Sanquetta C R, Corte A P, da Silva F. Biomass expansion factor and root-to-shoot ratio for Pinus in Brazil[J]. Carbon Balance and Management, 2011, 6: 6. DOI:10.1186/1750-0680-6-6. [63] 徐婷, 曹林, 申鑫, 等. 基于机载激光雷达与Landsat 8 OLI数据的亚热带森林生物量估算[J]. 植物生态学报, 2015, 39(4): 309-321. DOI:10.17521/cjpe.2015.0030. [64] António N, Tomé M, Tomé J, et al. Effect of tree, stand, and site variables on the allometry of Eucalyptus globulus tree biomass[J]. Canadian Journal of Forest Research, 2007, 37(5): 895-906. DOI:10.1139/x06-276. [65] Zewdie M, Olsson M, Verwijst T. Above-ground biomass production and allometric relations of Eucalyptus globulus Labill. coppice plantations along a chronosequence in the central highlands of Ethiopia[J]. Biomass and Bioenergy, 2009, 33(3): 421-428. DOI:10.1016/j.biombioe.2008.08.007. [66] Montagu K D, Düttmer K, Barton C V M, et al. Developing general allometric relationships for regional estimates of carbon sequestration:an example using Eucalyptus pilularis from seven contrasting sites[J]. Forest Ecology and Management, 2005, 204(1): 115-129. DOI:10.1016/j.foreco.2004.09.003. [67] 曹梦, 潘萍, 欧阳勋志, 等. 天然次生林中闽楠生物量分配特征及相容性模型[J]. 浙江农林大学学报, 2019, 36(4): 764-773. DOI:10.11833/j.issn.2095-0756.2019. 04.017. [68] 郭孝玉. 长白落叶松人工林树冠结构及生长模型研究[D]. 北京: 北京林业大学, 2013. [69] King D A. The adaptive significance of tree height[J]. The American Naturalist, 1990, 135(6): 809-828. DOI:10.1086/285075. [70] Río M, Bravo-Oviedo A, Ruiz-Peinado R, et al. Tree allometry variation in response to intra-and inter-specific competitions[J]. Trees, 2019, 33(1): 121-138. DOI:10.1007/s00468-018-1763-3. [71] Saint-André L, M’Bou A T, Mabiala A, et al. Age-related equations for above-and below-ground biomass of a Eucalyptus hybrid in Congo[J]. Forest Ecology and Management, 2005, 205(1/2/3): 199-214. DOI:10.1016/j.foreco.2004. 10.006. [72] Calegario N, Daniels R F, Maestri R, et al. Modeling dominant height growth based on nonlinear mixed-effects model: a clonal Eucalyptus plantation case study[J]. Forest Ecology and Management, 2005, 204(1): 11-21. DOI:10.1016/j.foreco.2004.07.051. [73] 苏瑞兰. 异速生长模型估算不同林龄杉木人工林生物量[J]. 福建林业科技, 2017, 44(2): 105-108. DOI:10.13428/j.cnki.fjlk.2017.02.021. [74] 王轶夫. 基于神经网络的森林生物量估测模型研究[D]. 北京: 北京林业大学, 2013. |