[1] Goovaerts M J, Dhaene J, de Schepper A. Stochastic upper bounds for present value functions[J]. The Journal of Risk and Insurance, 2000, 67(1): 1-14. DOI:10.2307/253674. [2] Hua L, Cheung K C. Stochastic orders of scalar products with applications[J]. Insurance: Mathematics and Economics, 2008, 42(3): 865-872. DOI:10.1016/j. insmatheco.2007.10.004. [3] Zhuang W W, Chen Z J, Hu T Z. Optimal allocation of policy limits and deductibles under distortion risk measures[J]. Insurance: Mathematics and Economics, 2009, 44(3): 409-414. DOI: 10.1016/j.insmatheco.2008.11.012. [4] Asmussen S, Christensen B J, Taksar M. Portfolio size as function of the premium: modelling and optimization[J]. Stochastics, 2013, 85(4): 575-588. DOI: 10.1080/17442508.2013.797426. [5] Jeon J, Park K. Optimal retirement and portfolio selection with consumption ratcheting[J]. Mathematics and Financial Economics, 2020, 14(3): 353-397. DOI:10.1007/s11579-020-00259-w. [6] Agudelo G, Franco L, Saona P. Actuarial model for estimating the optimum rate of return of a joint-and-survivor annuity portfolio[J]. Journal of Intelligent & Fuzzy Systems, 2021, 40(2): 1751-1759. DOI:10.3233/ jifs-189182. [7] Ranjbar M, Nasiri M M, Torabi S A. Multi-mode project portfolio selection and scheduling in a build-operate-transfer environment[J]. Expert Systems With Applications, 2022, 189: 116-134. DOI:10.1016/j.eswa.2021.116134. [8] 廖长高,李贤平,徐萍. 关于CIR模型中即期利率的条件密度及贴现债券定价[J].应用数学,2002, 15(S1):81-84. [9] Hadar J, Russell W. Rules for ordering uncertain prospects[J]. The American Economic Review, 1969, 59(1): 25-34. [10] Hanoch G, Levy H. The efficiency analysis of choices involving risk[J]. The Review of Economic Studies, 1969, 36(3): 335-346. DOI: 10.2307/2296431. [11] Rothschild M, Stiglitz J E. Increasing risk: I. A definition[J]. Journal of Economic Theory, 1970, 2(3): 225-243. DOI: 10.1016/0022-0531(70)90038-4. [12] Hammond J S III. Simplifying the choice between uncertain prospects where preference is nonlinear[J]. Management Science, 1974, 20(7):1047-1072. DOI:10.1287/mnsc.20.7.1047. [13] Meyer J. Second degree stochastic dominance with respect to a function[J]. International Economic Review, 1977, 18(2):477-487. DOI:10.2307/2525760. [14] Hadar J, Russell W R. Stochastic dominance and diversification[J]. Journal of Economic Theory, 1971, 3(3): 288-305. DOI:10.1016/0022-0531(71)90024-X. [15] Tesfatsion L. Stochastic dominance and the maximization of expected utility[J]. The Review of Economic Studies, 1976, 43(2):301-315. DOI:10.2307/2297326. [16] Li C K, Wong W K. Extension of stochastic dominance theory to random variables[J]. RAIRO-Operations Research, 1999, 33(4): 509-524. DOI:10.1051/ro: 1999100. [17] Guo X, Wong W K. Multivariate stochastic dominance for risk averters and risk seekers[J]. RAIRO-Operations Research, 2016, 50(3):575-586. DOI:10.1051/ro/2016026. [18] Levy H. Stochastic dominance: investment decision making under uncertainty[M]. 3rd ed. New York, NY: Springer New York, 2016. DOI:10.1007/978-3-319-21708-6. [19] Ma C. On peakedness of distributions of convex combinations[J]. Journal of Statistical Planning and Inference, 1998, 70(1):51-56. DOI:10.1016/S0378-3758 (97)00178-X. [20] Shaked M, Shanthikumar J G. Stochastic orders[M]. New York, NY: Springer New York, 2007. DOI:10.1007/978-0-387-34675-5. [21] Egozcue M, Wong W K. Gains from diversification on convex combinations: a majorization and stochastic dominance approach[J]. European Journal of Operational Research, 2010, 200(3):893-900. DOI:10.1016/j.ejor.2009.01.007. [22] 高振龙,胡晓予.二重随机序列随机和的重对数律[J]. 中国科学院研究生院学报, 2011, 28(4):424-430. DOI:10.7523/j.issn.2095-6134.2011.4.002. |