[1] Goldewijk K K.Three centuries of global population growth: A spatial referenced population (density) database for 1700-2000[J]. Population and Environment, 2005, 26(4): 343-367. DOI:10.1007/s11111-005-3346-7. [2] Chen Y, Tang H.Desertification in North China: Background, anthropogenic impacts and failures in combating it[J]. Land Degradation & Development, 2005, 16(4): 367-376. DOI:10.1002/ldr.667. [3] Houghton R A, Hackler J L, Lawrence K T. The U.S. Carbon budget: Contributions from land-Use change[J]. Science, 1999, 285(5427): 574-578. DOI:10.1126/science.285.5427.574. [4] Vitousek P M, Aber J D, Howarth R W, et al.Technical report: Human alteration of the global nitrogen cycle: Sources and consequences[J]. Ecological Applications, 1997, 7(3): 737. DOI:10.2307/2269431. [5] Chen D D, Zhang S H, Dong S K, et al.Effect of land-use on soil nutrients and microbial biomass of an alpine region on the northeastern Tibetan Plateau, China[J]. Land Degradation & Development, 2010, 21(5): 446-452. DOI:10.1002/ldr.990. [6] Elrys A S, Ali A, Zhang H M, et al.Patterns and drivers of global gross nitrogen mineralization in soils[J]. Global Change Biology, 2021, 27(22): 5950-5962. DOI:10.1111/gcb.15851. [7] Wedin D A, Tilman D.Influence of nitrogen loading and species composition on the carbon balance of grasslands[J]. Science, 1996, 274(5293): 1720-1723. DOI:10.1126/science.274.5293.1720. [8] Chapin F S, Matson P A, Vitousek P M. Nutrient cycling[M]// Principles of Terrestrial Ecosystem Ecology. New York: Springer, 2011: 259-296.10.1007/978-1-4419-9504-9_9. [9] Dilly O, Blume H P, Sehy U, et al.Variation of stabilised, microbial and biologically active carbon and nitrogen in soil under contrasting land use and agricultural management practices[J]. Chemosphere, 2003, 52(3): 557-569. DOI:10.1016/S0045-6535(03)00237-6. [10] Liu Y W, Geng X D, Wei D, et al.Divergence in ecosystem carbon fluxes and soil nitrogen characteristics across alpine steppe, alpine meadow and alpine swamp ecosystems in a biome transition zone[J]. Science of the Total Environment, 2020, 748: 142453. DOI:10.1016/j.scitotenv.2020.142453. [11] Gao J Q, Mo Y, Xu X L, et al.Spatiotemporal variations affect uptake of inorganic and organic nitrogen by dominant plant species in an alpine wetland[J]. Plant and Soil, 2014, 381(1): 271-278. DOI:10.1007/s11104-014-2130-9. [12] Saad O A L O, Conrad R. Temperature dependence of nitrification, denitrification, and turnover of nitric oxide in different soils[J]. Biology and Fertility of Soils, 1993, 15(1): 21-27. DOI:10.1007/BF00336283. [13] 陈懂懂, 张世虎, 杜国祯. 青藏高原东北缘不同海拔梯度土壤微生物量与氮矿化的潜力[J]. 兰州大学学报(自然科学版), 2010, 46(3): 86-90, 96. DOI:10.13885/j.issn.0455-2059.2010.03.020. [14] Ma S, Zhu X X, Zhang J, et al.Warming decreased and grazing increased plant uptake of amino acids in an alpine meadow[J]. Ecology and Evolution, 2015, 5(18): 3995-4005. DOI:10.1002/ece3.1646. [15] Wang C T, Long R J, Wang Q L, et al.Fertilization and litter effects on the functional group biomass, species diversity of plants, microbial biomass, and enzyme activity of two alpine meadow communities[J]. Plant and Soil, 2010, 331(1): 377-389. DOI:10.1007/s11104-009-0259-8. [16] 颜晓元, 夏龙龙, 遆超普. 面向作物产量和环境双赢的氮肥施用策略[J]. 中国科学院院刊, 2018, 33(2): 177-183. DOI:10.16418/j.issn.1000-3045.2018.02.007. [17] Yang L L, Zhang F S, Mao R Z, et al.Conversion of natural ecosystems to cropland increases the soil net nitrogen mineralization and nitrification in Tibet*1[J]. Pedosphere, 2008, 18(6): 699-706. DOI:10.1016/S1002-0160(08)60065-X. [18] Jing X, Wang Y H, Chung H, et al.No temperature acclimation of soil extracellular enzymes to experimental warming in an alpine grassland ecosystem on the Tibetan Plateau[J]. Biogeochemistry, 2014, 117(1): 39-54. DOI:10.1007/s10533-013-9844-2. [19] Zhang J B, Wang J, Müller C, et al.Ecological and practical significances of crop species preferential N uptake matching with soil N dynamics[J]. Soil Biology and Biochemistry, 2016, 103: 63-70. DOI:10.1016/j.soilbio.2016.08.009. [20] Wang J L, Zhao X Q, Zhang H Q, et al.The preference of maize plants for nitrate improves fertilizer N recovery efficiency in an acid soil partially because of alleviated Al toxicity[J]. Journal of Soils and Sediments, 2021, 21(9): 3019-3033. DOI:10.1007/s11368-021-03007-9. [21] Fu G, Shen Z X.Response of alpine soils to nitrogen addition on the Tibetan Plateau: A meta-analysis[J]. Applied Soil Ecology, 2017, 114: 99-104. DOI:10.1016/j.apsoil.2017.03.008. [22] Lu M, Yang Y H, Luo Y Q, et al.Responses of ecosystem nitrogen cycle to nitrogen addition: A meta-analysis[J]. The New Phytologist, 2011, 189(4): 1040-1050. DOI:10.1111/j.1469-8137.2010.03563.x. [23] Fu G, Shen Z X.Response of alpine plants to nitrogen addition on the Tibetan Plateau: A meta-analysis[J]. Journal of Plant Growth Regulation, 2016, 35(4): 974-979. DOI:10.1007/s00344-016-9595-0. [24] Wang X H, Zheng D, Shen Y C.Land use change and its driving forces on the Tibetan Plateau during 1990-2000[J]. CATENA, 2008, 72(1): 56-66. DOI:10.1016/j.catena.2007.04.003. [25] 朴世龙, 张宪洲, 汪涛, 等. 青藏高原生态系统对气候变化的响应及其反馈[J]. 科学通报, 2019, 64(27): 2842-2855. DOI:10.1360/TB-2019-0074. [26] 杨莉琳, 毛任钊, 刘俊杰, 等. 土地利用变化对土壤硝化及氨氧化细菌区系的影响[J]. 环境科学, 2011, 32(11): 3455-3460. DOI:10.13227/j.hjkx.2011.11.016. [27] Yang Y G, Yang Y, Geng Y Q, et al.Effects of different land types on soil enzyme activity in the Qinghai Lake region[J]. Wetlands, 2018, 38(4): 711-721. DOI:10.1007/s13157-018-1014-9. [28] Jiang L L, Wang S P, Pang Z, et al.Abiotic and biotic controls of soil dissolved organic nitrogen along a precipitation gradient on the Tibetan Plateau[J]. Plant and Soil, 2021, 459(1): 65-78. DOI:10.1007/s11104-020-04613-1. [29] 陈春乐, 田甜, 郭孝玉, 等. 淋洗修复后残留土壤中重金属的再释放及环境风险[J]. 环境科学学报, 2020, 40(9): 3405-3414. DOI:10.13671/j.hjkxxb.2020.0245. [30] Jones D L, Willett V B.Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil[J]. Soil Biology and Biochemistry, 2006, 38(5): 991-999. DOI:10.1016/j.soilbio.2005.08.012. [31] Kelly W R, Hornberger G M, Herman J S, et al.Kinetics of BTX biodegradation and mineralization in batch and column systems[J]. Journal of Contaminant Hydrology, 1996, 23(1/2): 113-132. DOI:10.1016/0169-7722(95)00092-5. [32] Sun G, Wu N, Luo P.Soil N pools and transformation rates under different land uses in a subalpine forest-grassland ecotone[J]. Pedosphere, 2005, 15(1): 52-58. DOI:10.1007/s10705-004-5083-1. [33] Nadelhoffer K J, Giblin A E, Shaver G R, et al.Effects of temperature and substrate quality on element mineralization in six Arctic soils[J]. Ecology, 1991, 72(1): 242-253. DOI:10.2307/1938918. [34] Zhang J, Cai Z, Müller C.Terrestrial N cycling associated with climate and plant-specific N preferences: A review[J]. European Journal of Soil Science, 2018, 69(3): 488-501. DOI:10.1111/ejss.12533. [35] Zhang X Y, Li Q W, Gao J Q, et al.Effects of rainfall amount and frequency on soil nitrogen mineralization in Zoigê alpine wetland[J]. European Journal of Soil Biology, 2020, 97: 103170. DOI:10.1016/j.ejsobi.2020.103170. [36] Baumann F, He J S, Schmidt K, et al.Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau[J]. Global Change Biology, 2009, 15(12): 3001-3017. DOI:10.1111/j.1365-2486.2009.01953.x. [37] Chen X P, Wang G X, Zhang T, et al. Effects of warming and nitrogen fertilization on GHG flux in an alpine swamp meadow of a permafrost region[J]. Science of the Total Environment, 2017, 601/602: 1389-1399. DOI:10.1016/j.scitotenv.2017.06.028. [38] Yang Y H, Fang J Y, Ji C J, et al.Above- and belowground biomass allocation in Tibetan grasslands[J]. Journal of Vegetation Science, 2009, 20(1): 177-184. DOI:10.1111/j.1654-1103.2009.05566.x. [39] 王洁, 杨曦, 朱兆洲, 等. 青藏高原土壤可溶性氮组成特征[J]. 生态学杂志, 2015, 34(6): 1660-1666. DOI:10.13292/j.1000-4890.2015.0152. [40] Wang G X, Wang Y B, Qian J, et al.Land cover change and its impacts on soil C and N in two watersheds in the center of the Qinghai-Tibetan Plateau[J]. Mountain Research and Development, 2006, 26(2): 153-162. DOI:10.1659/0276-4741(2006)26[153: lccaii]2.0.co;2. [41] Anderson T H, Domsch K H.Soil microbial biomass: The eco-physiological approach[J]. Soil Biology and Biochemistry, 2010, 42(12): 2039-2043. DOI:10.1016/j.soilbio.2010.06.026. [42] Prasad P, Basu S, Behera N.A comparative account of the microbiological characteristics of soils under natural forest, grassland and cropfield from Eastern India[J]. Plant and Soil, 1995, 175(1): 85-91. DOI:10.1007/BF02413013. [43] Szukics U, Abell G C J, Hödl V, et al. Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil[J]. FEMS Microbiology Ecology, 2010, 72(3): 395-406. DOI:10.1111/j.1574-6941.2010.00853.x. [44] De Klein C A M, Van Logtestijn R S P. Denitrification in grassland soils in The Netherlands in relation to irrigation, N-application rate, soil water content and soil temperature[J]. Soil Biology and Biochemistry, 1996, 28(2): 231-237. DOI:10.1016/0038-0717(95)00131-X. [45] Kowalchuk G A, Stephen J R.Ammonia-oxidizing bacteria: A model for molecular microbial ecology[J]. Annual Review of Microbiology, 2001, 55: 485-529. DOI:10.1146/annurev.micro.55.1.485. [46] Di H J, Cameron K C, Shen J P, et al.Ammonia-oxidizing bacteria and Archaea grow under contrasting soil nitrogen conditions[J]. FEMS Microbiology Ecology, 2010, 72(3): 386-394. DOI:10.1111/j.1574-6941.2010.00861.x. [47] Mendes R, Kruijt M, de Bruijn I, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria[J]. Science, 2011, 332(6033): 1097-1100. DOI:10.1126/science.1203980. [48] Vitousek P M, Gosz J R, Grier C C, et al.Nitrate losses from disturbed ecosystems[J]. Science, 1979, 204(4392): 469-474. DOI:10.2307/1748786. |