[1] Leidenfrost J G. On the fixation of water in diverse fire[J]. International Journal of Heat and Mass Transfer, 1966, 9(11): 1153-1166. DOI: 10.1016/0017-9310(66)90111-6. [2] Kim J. Spray cooling heat transfer: the state of the art[J]. International Journal of Heat and Fluid Flow, 2007, 28(4): 753-767. DOI: 10.1016/j.ijheatfluidflow.2006.09.003. [3] Moreira A L N, Moita A S, Panão M R. Advances and challenges in explaining fuel spray impingement: how much of single droplet impact research is useful?[J]. Progress in Energy and Combustion Science, 2010, 36(5): 554-580. DOI: 10.1016/j.pecs.2010.01.002. [4] Biance A L, Clanet C, Quéré D. Leidenfrost drops[J]. Physics of Fluids, 2003, 15(6): 1632-1637. DOI: 10.1063/1.1572161. [5] Quéré D. Leidenfrost dynamics[J]. Annual Review of Fluid Mechanics, 2013, 45: 197-215. DOI: 10.1146/annurev-fluid-011212-140709. [6] Vakarelski I U, Marston J O, Chan D Y C, et al. Drag reduction by Leidenfrost vapor layers[J]. Physical Review Letters, 2011, 106(21): 214501. DOI: 10.1103/physrevlett.106.214501. [7] Bouillant A, Mouterde T, Bourrianne P, et al. Leidenfrost wheels[J]. Nature Physics, 2018, 14(12): 1188-1192. DOI: 10.1038/s41567-018-0275-9. [8] Tran T, Staat H J J, Prosperetti A, et al. Drop impact on superheated surfaces[J]. Physical Review Letters, 2012, 108(3): 036101. DOI: 10.1103/physrevlett.108.036101. [9] Celestini F, Frisch T, Pomeau Y. Take off of small Leidenfrost droplets[J]. Physical Review Letters, 2012, 109(3): 034501. DOI: 10.1103/PhysRevLett.109.034501. [10] Brunet P, Snoeijer J H. Star-drops formed by periodic excitation and on an air cushion:a short review[J]. The European Physical Journal Special Topics, 2011, 192(1): 207-226. DOI: 10.1140/epjst/e2011-01375-5. [11] Ma X L, Burton J C. Self-organized oscillations of Leidenfrost drops[J]. Journal of Fluid Mechanics, 2018, 846: 263-291. DOI: 10.1017/jfm.2018.294. [12] Bergen J E, Basso B C, Bostwick J B. Leidenfrost drop dynamics: exciting dormant modes[J]. Physical Review Fluids, 2019, 4(8): 083603. DOI: 10.1103/physrevfluids.4.083603. [13] 胡子豪,任宁,俞熹.莱顿弗罗斯特水滴振荡模式的影响因素及机理探究[J].物理实验,2018,38(3):32-37. DOI:10.19655/j.cnki.1005-4642.2018.03.009. [14] Linke H, Alemán B J, Melling L D, et al. Self-propelled Leidenfrost droplets[J]. Physical Review Letters, 2006, 96(15): 154502. DOI: 10.1103/physrevlett.96.154502. [15] Cousins T R, Goldstein R E, Jaworski J W, et al. A ratchet trap for Leidenfrost drops[J]. Journal of Fluid Mechanics, 2012, 696: 215-227. DOI: 10.1017/jfm.2012.27. [16] 庄峻杰. 高温锯齿表面形貌对Leidenfrost液滴运动影响的实验研究[D].北京:华北电力大学,2022. DOI:10.27140/d.cnki.ghbbu.2022.000379. [17] Hashmi A, Xu Y H, Coder B, et al. Leidenfrost levitation: beyond droplets[J]. Scientific Reports, 2012, 2(1): 797. DOI: 10.1038/srep00797. [18] Dupeux G, Baier T, Bacot V, et al. Self-propelling uneven Leidenfrost solids[J]. Physics of Fluids, 2013, 25(5): 051704. DOI: 10.1063/1.4807007. [19] Maquet L, Sobac B, Darbois-Texier B, et al. Leidenfrost drops on a heated liquid pool[J]. Physical Review Fluids, 2016, 1(5): 053902. DOI: 10.1103/physrevfluids.1.053902. [20] Mogilevskiy E. Levitation of a nonboiling droplet over hot liquid bath[J]. Physics of Fluids, 2020, 32(1): 012114. DOI: 10.1063/1.5131818. [21] 王浩,徐进良.油面上相邻Leidenfrost液滴的相互作用及运动机制[J].物理学报,2023,72(5):226-237. DOI:10.7498/aps.72.20221822. [22] Snoeijer J H, Brunet P, Eggers J. Maximum size of drops levitated by an air cushion[J]. Physical Review E, 2009, 79(3): 036307. DOI: 10.1103/physreve.79.036307. [23] Adda-Bedia M, Kumar S, Lechenault F, et al. Inverse Leidenfrost effect: levitating drops on liquid nitrogen[J]. Langmuir, 2016, 32(17): 4179-4188. DOI: 10.1021/acs.langmuir.6b00574. [24] Janssens S D, Koizumi S, Fried E. Behavior of self-propelled acetone droplets in a Leidenfrost state on liquid substrates[J]. Physics of Fluids, 2017, 29(3): 032103. DOI: 10.1063/1.4977442. [25] Matsumoto R, Hasegawa K. Self-propelled Leidenfrost droplets on a heated glycerol pool[J]. Scientific Reports, 2021, 11: 3954. DOI: 10.1038/s41598-021-83517-1. [26] Gauthier A, Diddens C, Proville R, et al. Self-propulsion of inverse Leidenfrost drops on a cryogenic bath[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(4): 1174-1179. DOI: 10.1073/pnas.1812288116. [27] Van Limbeek M A J, Sobac B, Rednikov A, et al. Asymptotic theory for a Leidenfrost drop on a liquid pool[J]. Journal of Fluid Mechanics, 2019, 863: 1157-1189. DOI: 10.1017/jfm.2018.1025. [28] Sobac B, Maquet L, Duchesne A, et al. Self-induced flows enhance the levitation of Leidenfrost drops on liquid baths[J]. Physical Review Fluids, 2020, 5(6): 062701. DOI: 10.1103/physrevfluids.5.062701. [29] Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. DOI: 10.1016/0021-9991(92)90240-Y. [30] Zhao S, Zhang J, Ni M J. Boiling and evaporation model for liquid-gas flows: a sharp and conservative method based on the geometrical VOF approach[J]. Journal of Computational Physics, 2022, 452: 110908. DOI: 10.1016/j.jcp.2021.110908. [31] Popinet S. An accurate adaptive solver for surface-tension-driven interfacial flows[J]. Journal of Computational Physics, 2009, 228(16): 5838-5866. DOI: 10.1016/j.jcp.2009.04.042. [32] Bell J B, Colella P, Glaz H M. A second-order projection method for the incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 1989, 85(2): 257-283. DOI: 10.1016/0021-9991(89)90151-4. [33] Weymouth G D, Yue D K P. Conservative volume-of-fluid method for free-surface simulations on Cartesian-grids[J]. Journal of Computational Physics, 2010, 229(8): 2853-2865. DOI: 10.1016/j.jcp.2009.12.018. [34] Cummins S J, Francois M M, Kothe D B. Estimating curvature from volume fractions[J]. Computers & Structures, 2005, 83(6-7): 425-434. DOI: 10.1016/j.compstruc.2004.08.017. [35] Francois M M, Cummins S J, Dendy E D, et al. A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework[J]. Journal of Computational Physics, 2006, 213(1): 141-173. DOI: 10.1016/j.jcp.2005.08.004. [36] Popinet S. Numerical models of surface tension[J]. Annual Review of Fluid Mechanics, 2018, 50: 49-75. DOI: 10.1146/annurev-fluid-122316-045034. [37] Seric I, Afkhami S, Kondic L. Direct numerical simulation of variable surface tension flows using a volume-of-fluid method[J]. Journal of Computational Physics, 2018, 352: 615-636. DOI: 10.1016/j.jcp.2017.10.008. [38] Tripathi M K, Sahu K C. Motion of an air bubble under the action of thermocapillary and buoyancy forces[J]. Computers & Fluids, 2018, 177: 58-68. DOI: 10.1016/j.compfluid.2018.10.003. [39] Johansen H, Colella P. A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains[J]. Journal of Computational Physics, 1998, 147(1): 60-85. DOI: 10.1006/jcph.1998.5965. |