[1] 中国睡眠研究会. 2021年运动与睡眠白皮书[R/OL].(2021)[2023-03-15]. https://www.derucci.com.cn/upload/file/202103/36fad0de-96e6-478d-b38e-5e8d6032dd dd.pdf. [2] Kryger M H. Diagnosis and management of sleep apnea syndrome[J]. Clinical Cornerstone, 2000, 2(5): 39-44. DOI:10.1016/S1098-3597(00)90039-5. [3] Leung R S T, Bradley T D. Sleep apnea and cardiovascular disease[J]. American Journal of Respiratory and Critical Care Medicine, 2001, 164(12): 2147-2165. DOI:10.1164/ajrccm.164.12.2107045. [4] Bassetti C, Aldrich M S. Sleep apnea in acute cerebrovascular diseases: final report on 128 patients[J]. Sleep, 1999, 22(2): 217-223. DOI:10.1093/sleep/22.2.217. [5] Leger D, Bayon V, Laaban J P, et al. Impact of sleep apnea on economics[J]. Sleep Medicine Reviews, 2012, 16(5): 455-462. DOI:10.1016/j.smrv.2011.10.001. [6] Baillieul S, Revol B, Jullian-Desayes I, et al. Diagnosis and management of central sleep apnea syndrome[J]. Expert Review of Respiratory Medicine, 2019, 13(6): 545-557. DOI:10.1080/17476348.2019.1604226. [7] Gottlieb D J, Punjabi N M. Diagnosis and management of obstructive sleep apnea: a review[J]. JAMA, 2020, 323(14): 1389-1400. DOI:10.1001/jama.2020.3514. [8] Berry R B, Budhiraja R, Gottlieb D J, et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events: deliberations of the sleep apnea definitions task force of the American Academy of Sleep Medicine[J]. Journal of Clinical Sleep Medicine, 2012, 8(5): 597-619. DOI:10.5664/jcsm.2172. [9] Chinoy E D, Cuellar J A, Huwa K E, et al. Performance of seven consumer sleep-tracking devices compared with polysomnography[J]. Sleep, 2021, 44(5): zsaa291. DOI:10.1093/sleep/zsaa291. [10] Thomas R J, Mietus J E, Peng C K, et al. Differentiating obstructive from central and complex sleep apnea using an automated electrocardiogram-based method[J]. Sleep, 2007, 30(12): 1756-1769. DOI:10.1093/sleep/30.12.1756. [11] Zhao X Y, Wang X H, Yang T S, et al. Classification of sleep apnea based on EEG sub-band signal characteristics[J]. Scientific Reports, 2021, 11: 5824. DOI:10.1038/s41598-021-85138-0. [12] Lin Y Y, Wu H T, Hsu C A, et al. Sleep apnea detection based on thoracic and abdominal movement signals of wearable piezoelectric bands[J]. IEEE Journal of Biomedical and Health Informatics, 2016, 21(6): 1533-1545. DOI:10.1109/JBHI.2016.2636778. [13] Kagawa M, Tojima H, Matsui T. Non-contact diagnostic system for sleep apnea-hypopnea syndrome based on amplitude and phase analysis of thoracic and abdominal Doppler radars[J]. Medical & Biological Engineering & Computing, 2016, 54(5): 789-798. DOI:10.1007/s11517-015-1370-z. [14] Zhuang Z X, Wang F X, Yang X, et al. Accurate contactless sleep apnea detection framework with signal processing and machine learning methods[J]. Methods, 2022, 205: 167-178. DOI:10.1016/j.ymeth.2022.06.013. [15] Almazaydeh L, Elleithy K, Faezipour M, et al. Apnea detection based on respiratory signal classification[J]. Procedia Computer Science, 2013, 21: 310-316. DOI:10.1016/j.procs.2013.09.041. [16] Alshaer H, Hummel R, Bradley T D. Distinguishing patients with central from obstructive sleep apnea using overnight breath sound recordings[J]. European Respiratory Journal, 2017, 50(suppl 61): OA3204. DOI:10.1183/1393003.congress-2017.OA3204. [17] Molinaro N, Schena E, Silvestri S, et al. Contactless vital signs monitoring from videos recorded with digital cameras: an overview[J]. Frontiers in Physiology, 2022, 13:801709.DOI:10.3389/fphys.2022.801709. [18] Luce J M, Culver B H. Respiratory muscle function in health and disease[J]. CHEST, 1982, 81(1): 82-90. DOI:10.1378/chest.81.1.82. [19] Varady P, Bongar S, Benyo Z. Detection of airway obstructions and sleep apnea by analyzing the phase relation of respiration movement signals[J]. IEEE Transactions on Instrumentation and Measurement, 2003, 52(1): 2-6. DOI:10.1109/TIM.2003.809095. [20] Al-Angari H M, Sahakian A V. Automated recognition of obstructive sleep apnea syndrome using support vector machine classifier[J]. IEEE Transactions on Information Technology in Biomedicine, 2012, 16(3): 463-468. DOI:10.1109/TITB.2012.2185809. [21] Ammar H, Lashkar S. Obstructive sleep apnea diagnosis based on a statistical analysis of the optical flow in video recordings[C]//2016 International Symposium on Signal, Image, Video and Communications (ISIVC). November 21-23, 2016, Tunis, Tunisia. IEEE, 2016: 18-23. DOI:10.1109/ISIVC.2016.7893955. [22] Zhu K Y, Yadollahi A, Taati B. Non-contact apnea-hypopnea index estimation using near infrared video[C]//2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). July 23-27, 2019, Berlin, Germany. IEEE, 2016: 792-795. DOI:10.1109/EMBC.2019.8857711. [23] Lorato I, Stuijk S, Meftah M, et al. Camera-Based on-line short cessation of breathing detection[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Seoul, Korea (South): IEEE, 2019: 1656-1663[2022-07-17]. https://ieeexplore.ieee.org/document/9022052/. DOI:10.1109/ICCVW.2019.00205. [24] Akbarian S, Ghahjaverestan N M, Yadollahi A, et al. Distinguishing obstructive versus central apneas in infrared video of sleep using deep learning: validation study[J]. Journal of Medical Internet Research, 2020, 22(5): e17252. DOI:10.2196/17252. [25] Wang Y L, Hu M H, Zhou Y W, et al. Unobtrusive and automatic classification of multiple People’s abnormal respiratory patterns in real time using deep neural network and depth camera[J]. IEEE Internet of Things Journal, 2020, 7(9): 8559-8571. DOI:10.1109/JIOT.2020.2991456. [26] Scebba G, Da Poian G, Karlen W. Multispectral video fusion for non-contact monitoring of respiratory rate and apnea[J]. IEEE Transactions on Biomedical Engineering, 2021, 68(1): 350-359. DOI:10.1109/TBME.2020.2993649. [27] Yang R S, Zhang L D, Wang Y L, et al. Automatic detection of obstructive sleep apnea based on multimodal imaging system and binary code alignment[C]//Zhai G, Zhou J, Yang H, et al. Digital TV and Wireless Multimedia Communications. Singapore: Springer, 2022: 108-119. DOI:10.1007/978-981-19-2266-4_9. [28] Yang C, Cheung G, Stankovic V, et al. Sleep apnea detection via depth video and audio feature learning[J]. IEEE Transactions on Multimedia, 2017, 19(4): 822-835. DOI:10.1109/TMM.2016.2626969. [29] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. DOI: 10.1109/TSMC.1979.4310076. [30] Farnebäck G. Two-frame motion estimation based on polynomial expansion[M]//Bigun J, Gustavsson T. Image Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003: 363-370. DOI: 10.1007/3-540-45103-x_50. [31] Prisk G K, Hammer J, Newth C J L. Techniques for measurement of thoracoabdominal asynchrony[J]. Pediatric Pulmonology, 2002, 34(6): 462-472. DOI:10.1002/ppul.10204. [32] Kopaczka M, Özkan Ö, Merhof D. Face tracking and respiratory signal analysis for the detection of sleep apnea in thermal infrared videos with head movement[C]//Battiato S, Farinella G M, Leo M, et al. New Trends in Image Analysis and Processing-ICIAP 2017. Cham: Springer International Publishing, 2017: 163-170. DOI:10.1007/978-3-319-70742-6_15. [33] White D P. Pathogenesis of obstructive and central sleep apnea[J]. American Journal of Respiratory and Critical Care Medicine, 2005, 172(11): 1363-1370. DOI:10.1164/rccm.200412-1631SO. |