[1] Enzweiler M, Gavrila D M. Monocular pedestrian detection: survey and experiments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2179-2195.DOI: 10.1109/TPAMI.2008.260. [2] Dollár P, Wojek C, Schiele B, et al. Pedestrian detection: an evaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 743-761. DOI: 10.1109/TPAMI.2011.155. [3] Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. June 16-21, 2012, Providence, RI, USA. IEEE, 2012: 3354-3361. DOI: 10.1109/CVPR.2012.6248074. [4] Zhang S S, Benenson R, Schiele B. CityPersons: a diverse dataset for pedestrian detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 4457-4465. DOI: 10.1109/CVPR.2017.474. [5] Mao J Y, Xiao T T, Jiang Y N, et al. What can help pedestrian detection?[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 6034-6043. DOI: 10.1109/CVPR.2017.639. [6] Havyarimana V, Xiao Z, Sibomana A, et al. A fusion framework based on sparse Gaussian-wigner prediction for vehicle localization using GDOP of GPS satellites[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(2): 680-689.DOI: 10.1109/TITS.2019.2891585. [7] Yin H, Wang Y, Ding X Q, et al. 3D LiDAR-based global localization using Siamese neural network[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1380-1392.DOI: 10.1109/TITS.2019.2905046. [8] Choi S, Kim J H. Leveraging localization accuracy with off-centered GPS[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(6): 2277-2286.DOI: 10.1109/TITS.2019.2915108. [9] Akilan T, Jonathan Wu Q M. sEnDec: an improved image to image CNN for foreground localization[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(10): 4435-4443.DOI: 10.1109/TITS.2019.2940547. [10] Zhang S S, Benenson R, Omran M, et al. Towards reaching human performance in pedestrian detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 973-986.DOI: 10.1109/TPAMI.2017.2700460. [11] Yu X H, Gong Y Q, Jiang N, et al. Scale match for tiny person detection[C]//2020 IEEE Winter Conference on Applications of Computer Vision (WACV). March 1-5, 2020, Snowmass, CO, USA. IEEE, 2020: 1246-1254. DOI: 10.1109/WACV45572.2020.9093394. [12] Xia G S, Bai X, Ding J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 3974-3983. DOI: 10.1109/CVPR.2018.00418. [13] Han B, Wang Y H, Yang Z, et al. Small-scale pedestrian detection based on deep neural network[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(7): 3046-3055.DOI: 10.1109/TITS.2019.2923752. [14] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031. [15] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 936-944. DOI: 10.1109/CVPR.2017.106. [16] Zhou X Y, Wang D Q, Krähenbühl P. Objects as points[EB/OL]. 2019. arXiv: 1904.07850. (2019-04-16)[2023-02-22].https://arxiv.org/abs/1904.07850. [17] Ye T, Zhang X, Zhang Y, et al. Railway traffic object detection using differential feature fusion convolution neural network[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1375-1387.DOI: 10.1109/TITS.2020.2969993. [18] Hassaballah M, Kenk M A, Muhammad K, et al. Vehicle detection and tracking in adverse weather using a deep learning framework[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(7): 4230-4242.DOI: 10.1109/TITS.2020.3014013. [19] Yang P Y, Zhang G F, Wang L, et al. A part-aware multi-scale fully convolutional network for pedestrian detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(2): 1125-1137. DOI: 10.1109/TITS.2019.2963700. [20] Camara F, Bellotto N, Cosar S, et al. Pedestrian models for autonomous driving part I: low-level models, from sensing to tracking[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(10): 6131-6151. DOI: 10.1109/TITS.2020.3006768. [21] Camara F, Bellotto N, Cosar S, et al. Pedestrian models for autonomous driving part II: high-level models of human behavior[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(9): 5453-5472. DOI: 10.1109/TITS.2020.3006767. [22] Baek J, Hyun J, Kim E. A pedestrian detection system accelerated by kernelized proposals[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1216-1228. DOI: 10.1109/TITS.2019.2904836. [23] Bilen H, Pedersoli M, Tuytelaars T. Weakly supervised object detection with convex clustering[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 7-12, 2015, Boston, MA, USA. IEEE, 2015: 1081-1089. DOI: 10.1109/CVPR.2015.7298711. [24] Bilen H, Vedaldi A. Weakly supervised deep detection networks[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 2846-2854. DOI: 10.1109/CVPR.2016.311. [25] Song H O, Girshick R, Jegelka S, et al. On learning to localize objects with minimal supervision[C]//International Conference on Machine Learning. PMLR, 2014: 1611-1619. https://proceedings.mlr.press/v32/songb14.html. [26] Siva P, Xiang T. Weakly supervised object detector learning with model drift detection[C]//2011 International Conference on Computer Vision. November 6-13, 2011, Barcelona, Spain. IEEE, 2012: 343-350. DOI: 10.1109/ICCV.2011.6126261. [27] Wang C, Huang K Q, Ren W Q, et al. Large-scale weakly supervised object localization via latent category learning[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2015, 24(4): 1371-1385. DOI: 10.1109/TIP.2015.2396361. [28] Zhou B L, Khosla A, Lapedriza A, et al. Learning deep features for discriminative localization[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 2921-2929. DOI: 10.1109/CVPR.2016.319. [29] Deselaers T, Alexe B, Ferrari V. Weakly supervised localization and learning with generic knowledge[J]. International Journal of Computer Vision, 2012, 100(3): 275-293. DOI: 10.1007/s11263-012-0538-3. [30] Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: common objects in context[C]//European Conference on Computer Vision. Cham: Springer, 2014: 740-755.10.1007/978-3-319-10602-1_48. [31] Ionescu C, Papava D, Olaru V, et al. Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1325-1339. DOI: 10.1109/TPAMI.2013.248. [32] Papadopoulos D P, Uijlings J R R, Keller F, et al. Training object class detectors with click supervision[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 180-189. DOI: 10.1109/CVPR.2017.27. [33] Ribera J, Güera D, Chen Y H, et al. Locating objects without bounding boxes[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019, Long Beach, CA, USA. IEEE, 2020: 6472-6482. DOI: 10.1109/CVPR.2019.00664. [34] Choe J, Oh S J, Lee S, et al. Evaluating weakly supervised object localization methods right[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020, Seattle, WA, USA. IEEE, 2020: 3130-3139. DOI: 10.1109/CVPR42600.2020.00320. [35] Zhu P F, Wen L Y, Bian X, et al. Vision meets drones: a challenge[EB/OL]. 2018. arXiv: 1804.07437. (2018-04-28)[2023-02-22].https://arxiv.org/abs/1804.07437. [36] Yang Z, Liu S H, Hu H, et al. RepPoints: point set representation for object detection[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). October 27-November 2, 2019, Seoul, Korea (South). IEEE, 2020: 9656-9665. DOI: 10.1109/ICCV.2019.00975. [37] Sun P Z, Zhang R F, Jiang Y, et al. Sparse R-CNN: end-to-end object detection with learnable proposals[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 20-25, 2021, Nashville, TN, USA. IEEE, 2021: 14449-14458. DOI: 10.1109/CVPR46437.2021.01422. |