[1] Krizhevsky A, Sutskever I, Hinton G E.ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.DOI:10.1145/3065386. [2] Grandvalet Y, Bengio Y.Semi-supervised learning by entropy minimization[C]//Proceedings of the 17th International Conference on Neural Information Processing Systems. December 13-18, 2004, Vancouver, BC, Canada. ACM, 2004: 529-536. [3] Chen T, Kornblith S, Swersky K, et al.Big self-supervised models are strong semi-supervised learners[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. December 6-12, 2020, Vancouver, BC, Canada. ACM, 2020: 22243-22255. DOI: 10.5555/3495724.3497589. [4] Lee D H.Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks[C]//Workshop on challenges in representation learning, ICML. 2013, 3(2): 896. [5] Sohn K, Berthelot D,Li C L, et al.FixMatch: Simplifying semi-supervised learning with consistency and confidence[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. December 6-12, 2020, Vancouver, BC, Canada. ACM, 2020: 596-608. DOI: 10.5555/3495724.3495775. [6] Kirkpatrick J, Pascanu R, Rabinowitz N, et al.Overcoming catastrophic forgetting in neural networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(13): 3521-3526. DOI: 10.1073/pnas.1611835114. [7] Chen B, Jiang J, Wang X, et al.Debiased self-training for semi-supervised learning[C]//Proceedings of the 36th International Conference on Neural Information Processing Systems. DOI:10.48550/2202.07136. [8] Devlin J, Chang M W, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. 2018: arXiv: 1810.04805. (2018-10-11)[2024-04-10].http://arxiv.org/abs/1810.04805.pdf. [9] Zhou B L, Lapedriza A, Khosla A, et al.Places: A 10 million image database for scene recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(6): 1452-1464. DOI:10.1109/TPAMI.2017.2723009 [10] Fujisawa H, Eguchi S.Robust parameter estimation with a small bias against heavy contamination[J]. Journal of Multivariate Analysis, 2008, 99(9): 2053-2081. DOI: 10.1016/j.jmva.2008.02.004. [11] Ren M Y, Zhang S G, Ma S G, et al.Gene-environment interaction identification via penalized robust divergence[J]. Biometrical Journal. Biometrische Zeitschrift, 2022, 64(3): 461-480. DOI: 10.1002/bimj.202000157. [12] Hung H, Jou Z Y, Huang S Y.Robust mislabel logistic regression without modeling mislabel probabilities[J]. Biometrics, 2018, 74(1): 145-154.DOI:10.1111/biom.12726. [13] Jones M C, Hjort N L, Harris I R, et al.A comparison of related density‐based minimum divergence estimators[J]. Biometrika, 2001, 88(3): 865-873. DOI: 10.1093/biomet/88.3.865. [14] Zhang Z L, Sabuncu M R.Generalized cross entropy loss for training deep neural networks with noisy labels[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. December 3-8, 2018, Montréal, Canada. ACM, 2018: 8792-8802. DOI: 10.5555/3327546.3327555. [15] Amini M R, Feofanov V, Pauletto L, et al. Self-training: a survey[EB/OL].2022: arXiv: 2202.12040.(2022-02-24)[2024-04-10].https://doi.org/10.48550/arXiv.2202.12040. [16] Zou Y, Yu Z D, Liu X F, et al.Confidence regularized self-training[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South). IEEE, 2019: 5981-5990. DOI: 10.1109/ICCV.2019.00608. [17] Huber P J.Robust statistics[M]. Wiley, 1982. DOI: 10.1002/0471725250. [18] Ouali Y, Hudelot C, Tami M.Semi-supervised semantic segmentation with cross-consistency training[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA. IEEE, 2020: 12671-12681. DOI: 10.1109/CVPR42600.2020.01269. [19] Lai X, Tian Z T, Jiang L, et al.Semi-supervised semantic segmentation with directional context-aware consistency[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA. IEEE, 2021: 1205-1214. DOI: 10.1109/CVPR46437.2021.00126. [20] Cubuk E D, Zoph B, Shlens J, et al.Randaugment: Practical automated data augmentation with a reduced search space[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle, WA, USA. IEEE, 2020: 3008-3017. DOI: 10.1109/CVPRW50498.2020.00359. [21] Berthelot D, Carlini N, Cubuk E D, et al.ReMixMatch: semi-supervised learning with distribution alignment and augmentation anchoring[EB/OL]. 2019: arXiv: 1911.09785.(2019-11-21)[2024-04-10]. https://doi.org/10.48550/arXiv.1911.09785. [22] Berthelot D, Carlini N, Goodfellow I, et al.MixMatch: a holistic approach to semi-supervised learning[EB/OL]. 2019: arXiv: 1905.02249.(2019-05-06)[2024-04-10].https://doi.org/10.48550/arXiv.1905.02249 |