Journal of University of Chinese Academy of Sciences
LI Yuanyuan, GUO Li, DU Rui†, ZHAO Hua, JIA Zeyu
Received:
2024-11-13
Revised:
2025-03-04
Contact:
†E-mail: Supported by:
CLC Number:
LI Yuanyuan, GUO Li, DU Rui, ZHAO Hua, JIA Zeyu. Insight into the distribution and evolution of certain antibiotic resistance genes in different environmental media in Hulunbuir grassland*[J]. Journal of University of Chinese Academy of Sciences, DOI: 10.7523/j.ucas.2025.007.
[1] Yang Y Y, Liu G H, Ye C, et al.Bacterial community and climate change implication affected the diversity and abundance of antibiotic resistance genes in wetlands on the Qinghai-Tibetan Plateau[J]. Journal of Hazardous Materials, 2019, 361: 283-293. DOI:10.1016/j.jhazmat. 2018.09.002. [2] Song M K, Song D D, Jiang L F, et al.Large-scale biogeographical patterns of antibiotic resistome in the forest soils across China[J]. Journal of Hazardous Materials, 2021, 403: 123990. DOI:10. 1016/j.jhazmat.2020.123990. [3] Abramova A, Berendonk T U, Bengtsson-Palme J.A global baseline for qPCR-determined antimicrobial resistance gene prevalence across environments[J]. Environment International, 2023, 178: 108084. DOI:10.1016/j.envint.2023.108084. [4] Zhou R J, Zeng S Z, Hou D W, et al.Occurrence of human pathogenic bacteria carrying antibiotic resistance genes revealed by metagenomic approach: A case study from an aquatic environment[J]. Journal of Environmental Sciences, 2019, 80: 248-256. DOI:10.1016/j.jes.2019.01.001. [5] Zhu G B, Wang X M, Yang T, et al.Air pollution could drive global dissemination of antibiotic resistance genes[J]. The ISME Journal, 2021, 15(1): 270-281. DOI:10.1038/s41396-020-00780-2. [6] Aparicio-Blanco J, Vishwakarma N, Lehr C M, et al.Antibiotic resistance and tolerance: What can drug delivery do against this global threat?[J]. Drug Delivery and Translational Research, 2024, 14(6): 1725-1734. DOI:10.1007/s13346-023-01513-6. [7] Wang Q, Guo S Y, Hou Z L, et al.Rainfall facilitates the transmission and proliferation of antibiotic resistance genes from ambient air to soil[J]. Science of The Total Environment, 2021, 799: 149260. DOI:10.1016/j.scitotenv.2021. 149260. [8] Mariappan V, Vellasamy K M, Mohamad N A, et al.OneHealth approaches contribute towards antimicrobial resistance: Malaysian perspective[J]. Frontiers in Microbiology, 2021, 12: 718774. DOI:10.3389/fmicb.2021.718774. [9] Ben Y J, Fu C X, Hu M, et al.Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review[J]. Environmental Research, 2019, 169: 483-493. DOI:10.1016/j.envres.2018.11.040. [10] Dafale N A, Srivastava S, Purohit H J.Zoonosis: An emerging link to antibiotic resistance under "one health approach"[J]. Indian Journal of Microbiology, 2020, 60(2): 139-152. DOI:10. 1007/s12088-020-00860-z. [11] Zhu Y G, Zhao Y, Li B, et al.Continental-scale pollution of estuaries with antibiotic resistance genes[J]. Nature Microbiology, 2017, 2: 16270. DOI:10.1038/nmicrobiol.2016.270. [12] Li J, Cao J J, Zhu Y G, et al.Global survey of antibiotic resistance genes in air[J]. Environmental Science & Technology, 2018, 52(19): 10975-10984. DOI:10.1021/acs.est.8b02204. [13] Xie J W, Jin L, Wu D, et al.Inhalable antibiotic resistome from wastewater treatment plants to urban areas: Bacterial hosts, dissemination risks, and source contributions[J]. Environmental Science & Technology, 2022, 56(11): 7040-7051. DOI:10. 1021/acs.est.1c07023. [14] Zhu D, Chen Q L, Ding J, et al.Antibiotic resistance genes in the soil ecosystem and planetary health: Progress and prospect[J]. Scientia Sinica Vitae, 2019, 49(12): 1652-1663. DOI:10.1360/SSV-2019-0267(in Chinese). [15] Liao Z H, Ren M Z, Sun J R, et al.Health risk assessment of Pb emissions from MSW incineration plants[J]. Journal of University of Chinese Academy of Sciences, 2014, 31(3): 410-417. DOI:10.7523/j.issn.2095-6134. 2014.03.017 (in Chinese). [16] Song L, Jiang G Y, Wang C, et al.Effects of antibiotics consumption on the behavior of airborne antibiotic resistance genes in chicken farms[J]. Journal of Hazardous Materials, 2022, 437: 129288. DOI:10.1016/j.jhazmat.2022.129288. [17] Di Cesare A, Eckert E M, Rogora M, et al.Rainfall increases the abundance of antibiotic resistance genes within a riverine microbial community[J]. Environmental Pollution, 2017, 226: 473-478. DOI:10.1016/j.envpol.2017.04.036. [18] Zhang Y, Xu Z X, Chu W H, et al.Tracking the source of antibiotic resistome in the stormwater network drainage in the presence of sewage illicit connections[J]. Science of The Total Environment, 2024, 912: 168989. DOI:10.1016/j.scitotenv. 2023. 168989. [19] Huijbers P M C, Blaak H, de Jong M C M, et al. Role of the environment in the transmission of antimicrobial resistance to humans: A review[J]. Environmental Science & Technology, 2015, 49(20): 11993-12004. DOI:10.1021/acs.est. 5b02566. [20] Zhao X, Wang J H, Zhu L S, et al.Field-based evidence for enrichment of antibiotic resistance genes and mobile genetic elements in manure-amended vegetable soils[J]. Science of The Total Environment, 2019, 654: 906-913. DOI:10. 1016/j.scitotenv.2018.10.446. [21] Huang F Y, Zhou S Y D, Wang J N, et al. Profiling of antibiotic resistance genes in different croplands[J]. Environmental Science, 2021, 42(6): 2975-2980. DOI:10.13227/j.hjkx.202009091(in Chinese). [22] Zhang T, Zhang M, Zhang X X, et al.Tetracycline resistance genes and tetracycline resistant lactose-fermenting Enterobacteriaceae in activated sludge of sewage treatment plants[J]. Environmental Science & Technology, 2009, 43(10): 3455-3460. DOI:10.1021/es803309m. [23] Gao M, Jia R Z, Qiu T L, et al.Size-related bacterial diversity and tetracycline resistance gene abundance in the air of concentrated poultry feeding operations[J]. Environmental Pollution, 2017, 220: 1342-1348. DOI:10.1016/j.envpol.2016.10.101. [24] Chen H Y, Li Y Z, Sun W C, et al.Characterization and source identification of antibiotic resistance genes in the sediments of an interconnected river-lake system[J]. Environment International, 2020, 137: 105538. DOI:10.1016/j.envint.2020.105538. [25] Gudda F O, Waigi M G, Odinga E S, et al.Antibiotic-contaminated wastewater irrigated vegetables pose resistance selection risks to the gut microbiome[J]. Environmental Pollution, 2020, 264: 114752. DOI:10.1016/j.envpol.2020.114752. [26] Zhao Y, Yang Q E, Zhou X, et al.Antibiotic resistome in the livestock and aquaculture industries: Status and solutions[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(19): 2159-2196. DOI:10.1080/10643389.2020. 1777815. [27] Zhang S J, Du R, Chen H L, et al.Characteristics and distribution of efficient ice nucleating particles in rainwater and soil[J]. Atmospheric Research, 2020, 246: 105129. DOI:10.1016/j.atmosres.2020. 105129. [28] Kozich J J, Westcott S L, Baxter N T, et al.Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform[J]. Applied and Environmental Microbiology, 2013, 79(17): 5112-5120. DOI:10. 1128/AEM.01043-13. [29] Du P R, Du R, Lu Z D, et al.Variation of bacterial and fungal community structures in PM2.5 collected during the 2014 APEC summit periods[J]. Aerosol and Air Quality Research, 2018, 18(2): 444-455. DOI:10.4209/aaqr.2017.07.0238. [30] Anitha P, Anbarasu A, Ramaiah S.Computational gene network study on antibiotic resistance genes of Acinetobacter baumannii[J]. Computers in Biology and Medicine, 2014, 48: 17-27. DOI:10.1016/j.compbiomed.2014.02.009. [31] Muurinen J, Stedtfeld R, Karkman A, et al.Influence of manure application on the environmental resistome under Finnish agricultural practice with restricted antibiotic use[J]. Environmental Science & Technology, 2017, 51(11): 5989-5999. DOI:10.1021/acs.est.7b00551. [32] Merino L, Darnerud P O, Toldrá F, et al.Time-dependent depletion of nitrite in pork/beef and chicken meat products and its effect on nitrite intake estimation[J]. Food Additives & Contaminants: Part A, 2016, 33(2): 186-192. DOI:10.1080/19440049.2015.1125530. [33] Rossi R, Saluti G, Moretti S, et al.Multiclass methods for the analysis of antibiotic residues in milk by liquid chromatography coupled to mass spectrometry: A review[J]. Food Additives & Contaminants: Part A, 2018, 35(2): 241-257. DOI:10.1080/19440049.2017. 1393107. [34] Yang S F, Lin C F, Lin A Y C, et al. Sorption and biodegradation of sulfonamide antibiotics by activated sludge: Experimental assessment using batch data obtained under aerobic conditions[J]. Water Research, 2011, 45(11): 3389-3397. DOI:10.1016/j.watres.2011.03.052. [35] Carvalho I T, Santos L.Antibiotics in the aquatic environments: A review of the European scenario[J]. Environment international, 2016, 94: 736-757. DOI:10.1016/j.envint.2016.06.025. [36] Zhang K, Xin R, Zhao Z, et al.Mobile genetic elements are the Major driver of High antibiotic resistance genes abundance in the Upper reaches of huaihe River Basin[J]. Journal of Hazardous Materials, 2021, 401: 123271. DOI:10.1016/j. jhazmat.2020.123271. [37] Makowska N, Koczura R, Mokracka J.Class 1 integrase, sulfonamide and tetracycline resistance genes in wastewater treatment plant and surface water[J]. Chemosphere, 2016, 144: 1665-1673. DOI:10.1016/j.chemosphere.2015.10.044. [38] Niu Z G, Zhang K, Zhang Y.Occurrence and distribution of antibiotic resistance genes in the coastal area of the Bohai Bay, China[J]. Marine Pollution Bulletin, 2016, 107(1): 245-250. DOI:10.1016/j.marpolbul.2016.03.064. [39] Marti R, Scott A, Tien Y C, et al.Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest[J]. Applied and Environmental Microbiology, 2013, 79(18): 5701-5709. DOI:10. 1128/AEM.01682-13. [40] Tian H Y, Liu J W, Sun J B, et al.Cross-media migration behavior of antibiotic resistance genes (ARGs) from municipal wastewater treatment systems (MWTSs): Fugitive characteristics, sharing mechanisms, and aerosolization behavior[J]. Science of The Total Environment, 2023, 893: 164710. DOI:10.1016/j.scitotenv. 2023. 164710. [41] Wang Y Z, Wang C, Song L.Distribution of antibiotic resistance genes and bacteria from six atmospheric environments: Exposure risk to human[J]. Science of The Total Environment, 2019, 694: 133750. DOI:10.1016/j.scitotenv. 2019. 133750. [42] Xie J W, Jin L, Luo X S, et al.Seasonal disparities in airborne bacteria and associated antibiotic resistance genes in PM2.5 between urban and rural sites[J]. Environmental Science & Technology Letters, 2018, 5(2): 74-79. DOI:10.1021/acs.estlett. 7b00561. [43] Cáliz J, Subirats J, Triadó-Margarit X, et al.Global dispersal and potential sources of antibiotic resistance genes in atmospheric remote depositions[J]. Environment International, 2022, 160: 107077. DOI:10.1016/j.envint.2022.107077. [44] Maddamsetti R, Yao Y, Wang T, et al.Duplicated antibiotic resistance genes reveal ongoing selection and horizontal gene transfer in bacteria[J]. Nature Communications, 2024, 15(1): 1449. DOI:10.1038/s41467-024-45638-9. [45] Xie J W, Jin L, He T T, et al.Bacteria and antibiotic resistance genes (ARGs) in PM2.5 from China: Implications for human exposure[J]. Environmental Science & Technology, 2019, 53(2): 963-972. DOI:10.1021/acs.est.8b04630. [46] Bai H, He L Y, Wu D L, et al.Spread of airborne antibiotic resistance from animal farms to the environment: Dispersal pattern and exposure risk[J]. Environment International, 2022, 158: 106927. DOI:10.1016/j.envint.2021.106927. [47] Dey H, Vasudevan K, Dasegowda K R, et al.An integrated gene network analysis to decode the multi-drug resistance mechanism in Klebsiella pneumoniae[J]. Microbial Pathogenesis, 2022, 173: 105878. DOI:10.1016/j.micpath.2022.105878. [48] Hu Y F, Yang X, Qin J J, et al.Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota[J]. Nature Communications, 2013, 4: 2151. DOI:10.1038/ ncomms3151. [49] Hernando-Amado S, Coque T M, Baquero F, et al.Defining and combating antibiotic resistance from One Health and Global Health perspectives[J]. Nature Microbiology, 2019, 4(9): 1432-1442. DOI:10.1038/s41564-019-0503-9. [50] Chen Y F, Ke Y H, Wang Y F, et al.Changes of predominant species/biovars and sequence types of Brucella isolates, Inner Mongolia, China[J]. BMC Infectious Diseases, 2013, 13: 514. DOI:10. 1186/1471-2334-13-514. [51] Kong M, Zhang Y, Ma Y, et al.Antibiotics and antibiotic resistance change bacterial community compositions in marine sediments[J]. Environmental Research, 2024, 244: 118005. DOI:10.1016/j.envres.2023.118005. |
[1] | MU Weiyan, JIA Xiaofang, XIONG Shifeng. Interval estimation for the process capability index under the inverse Rayleigh and log-logistic distributions [J]. Journal of University of Chinese Academy of Sciences, 2024, 41(6): 728-735. |
[2] | ZHANG Lianping, WANG Shimin. Dynamic evolution of natural convection in a porous square cavity [J]. Journal of University of Chinese Academy of Sciences, 2024, 41(5): 589-603. |
[3] | WANG Bin, HU Zhiru, YANG Qizhi, WANG Yong, WANG Jinyong. A calculation method and test analysis research of all fresh air ventilation load based on large-scale nursery piggery [J]. Journal of University of Chinese Academy of Sciences, 2024, 41(4): 566-576. |
[4] | LI Cuihuan, LI Guodong, TSAI Chao-Wei, DANZENG Luobu. Comparisons among common methods of calculating stellar masses and star formation rates for normal galaxies [J]. Journal of University of Chinese Academy of Sciences, 2024, 41(3): 312-320. |
[5] | SU Mengqian, SHI Yusheng. Spatial and temporal distribution characteristics and influential factors of PM2.5 pollution in Beijing-Tianjin-Hebei [J]. Journal of University of Chinese Academy of Sciences, 2024, 41(3): 334-344. |
[6] | LUO Zhongkai, ZHANG Libo. Learning path planning methods [J]. Journal of University of Chinese Academy of Sciences, 2024, 41(1): 11-27. |
[7] | FENG Qiliang, HAN Congying, ZHAO Tong. Fingerprint image quality evaluation algorithm based on visual perception model [J]. Journal of University of Chinese Academy of Sciences, 2023, 40(6): 821-833. |
[8] | ZHAO Minghao, ZHOU Yiguo. Combined algorithm for phased array antenna beamforming [J]. Journal of University of Chinese Academy of Sciences, 2023, 40(6): 771-777. |
[9] | FENG Hongye, JU Yiwen, ZHU Hongjian, YU Kun, QIAO Peng, JU Liting, XIAO Lei. Tectonic evolution and mineralization of Carlin-type gold deposits in Youjiang basin [J]. Journal of University of Chinese Academy of Sciences, 2023, 40(5): 614-636. |
[10] | WANG Kewen, QIN Jian, MA Haitao. Spatial-temporal evolution simulation and ecological response of urban expansion in Western New City of Chongqing based on CA-Markov model [J]. Journal of University of Chinese Academy of Sciences, 2023, 40(4): 496-505. |
[11] | WANG Tian, YANG Zhaoping, HAN Fang, PAN Xumei, WANG Zhi, CHEN Xiaodong. Spatial-temporal evolution characteristics and influence mechanism of Xinjiang A-grade tourist attractions based on geo-detector [J]. Journal of University of Chinese Academy of Sciences, 2023, 40(3): 322-332. |
[12] | WU Di, DENG Yangkendi, YU Dandan, YAN Dunyan. Limiting property of distribution function in Lorentz space [J]. Journal of University of Chinese Academy of Sciences, 2023, 40(1): 1-5. |
[13] | HANG Yufei, TAN Jingqiang, DENG Min, HU Guoqing, GUO Zhaohui, LI Chuxuan, XUE Shengguo. Spatial distribution and ecological risk assessment of heavy metals in a lead smelting site in Central China [J]. Journal of University of Chinese Academy of Sciences, 2022, 39(4): 481-489. |
[14] | LI Yifei, SHI Yaolin, ZHANG Huai. Reshape of the drainage landform by exogenous inflow: river incision and drainage capture [J]. Journal of University of Chinese Academy of Sciences, 2022, 39(3): 309-320. |
[15] | LI Runfu, NIU Haishan, KONG Qian, LIU Qiang. Comparison of natural 15N abundance technique and 15N dilution technique in the determination of plant nitrogen fixation [J]. Journal of University of Chinese Academy of Sciences, 2022, 39(1): 34-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Journal of University of Chinese Academy of Sciences
Support by Beijing Magtech Co.ltd support@magtech.com.cn