[1] Livi L, Rizzi A.The graph matching problem[J]. Pattern Analysis and Applications, 2013, 16(3): 253-283. DOI: 10.1007/s10044-012-0284-8. [2] Yan J C, Yin X C, Lin W Y, et al.A short survey of recent advances in graph matching[C]//Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval. June 6 - 9, 2016, New York, New York, USA. ACM, 2016: 167-174. DOI: 10.1145/2911996.2912035. [3] Loiola E M, de Abreu N M M, Boaventura-Netto P O, et al. A survey for the quadratic assignment problem[J]. European Journal of Operational Research, 2007, 176(2): 657-690. DOI: 10.1016/j.ejor.2005.09.032. [4] Gold S, Rangarajan A.A graduated assignment algorithm for graph matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(4): 377-388. DOI: 10.1109/34.491619. [5] Leordeanu M, Hebert M.A spectral technique for correspondence problems using pairwise constraints[C]//Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1. October 17-21, 2005, Beijing, China. IEEE, 2005: 1482-1489. DOI: 10.1109/ICCV.2005.20. [6] Cour T, Srinivasan P, Shi J. Balanced Graph Matching[EB/OL]. (2006)[2025-02-26].https://proceedings.neurips.cc/paper_files/paper/2006/file/d1c373ab1570cfb9a7dbb53c186b37a2-Paper.pdf. [7] Zass R, Shashua A.Probabilistic graph and hypergraph matching[C]//2008 IEEE Conference on Computer Vision and Pattern Recognition. June 23-28, 2008, Anchorage, AK, USA. IEEE, 2008: 1-8. DOI: 10.1109/CVPR.2008.4587500. [8] Zaslavskiy M, Bach F, Vert J P.A path following algorithm for the graph matching problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2227-2242. DOI: 10.1109/TPAMI.2008.245. [9] Leordeanu M, Hebert M, Sukthankar R.An integer projected fixed point method for graph matching and MAP inference[C]//Neural Information Processing Systems, 2020. [10] Cho M, Lee J, Lee K M.Reweighted random walks for graph matching[C]// Computer Vision - ECCV 2010. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 492-505. DOI: 10.1007/978-3-642-15555-0_36. [11] Cho M, Sun J, Duchenne O, et al.Finding matches in a haystack: A max-pooling strategy for graph matching in the presence of outliers[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. June 23-28, 2014, Columbus, OH, USA. IEEE, 2014: 2091-2098. DOI: 10.1109/CVPR.2014.268. [12] Yang X, Qiao H, Liu Z Y.Outlier robust point correspondence based on GNCCP[J]. Pattern Recognition Letters, 2015, 55: 8-14. DOI: 10.1016/j.patrec.2014.12.011. [13] Yang X, Liu Z Y.Adaptive graph matching[J]. IEEE Transactions on Cybernetics, 2018, 48(5): 1432-1445. DOI: 10.1109/TCYB.2017.2697968. [14] Yang X, Liu Z Y, Qiao H.A continuation method for graph matching based feature correspondence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 1809-1822. DOI: 10.1109/TPAMI.2019.2903483. [15] Wang F D, Xue N, Yu J G, et al. Zero-assignment constraint for graph matching with outliers[EB/OL].2020. 2003.11928.(2020-03-26)[2025-02-27] https://arxiv.org/abs/2003.11928v1. [16] Newman M.Networks: An Introduction[M]. Oxford: Oxford University Press, 2010. DOI: 10.1093/acprof:oso/9780199206650.001.0001. [17] Costantini L, Sciarra C, Ridolfi L, et al. Measuring node centrality when local and global measures overlap[J]. Physical Review. E, 2022, 105(): 044317. DOI: 10.1103/PhysRevE.105.044317. [18] Dwivedi S P. Inexact graph matching using centrality measures[EB/OL].2021. 2201.04563.(2021-12-31)[2025-02-27] https://arxiv.org/abs/2201.04563v1. [19] Zhou F, De la Torre F. Factorized graph matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(9): 1774-1789. DOI: 10.1109/TPAMI.2015.2501802. [20] Bloch F, Jackson M O, Tebaldi P.Centrality measures in networks[J]. Social Choice and Welfare, 2023, 61: 413-453. DOI: 10.1007/s00355-023-01456-4. [21] Liu Z Y, Qiao H.GNCCP-graduated NonConvexityand concavity procedure[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(6): 1258-1267. DOI: 10.1109/TPAMI.2013.223. [22] Frank M, Wolfe P.An algorithm for quadratic programming[J]. Naval Research Logistics Quarterly, 1956, 3(1/2): 95-110. DOI: 10.1002/nav.3800030109. [23] Kuhn H W.The Hungarian method for the assignment problem[J]. Naval Research Logistics Quarterly, 1955, 2(1/2): 83-97. DOI: 10.1002/nav.3800020109. [24] Vogelstein J T, Conroy J M, Lyzinski V, et al. Fast approximate quadratic programming for large (brain) graph matching[EB/OL].2011. 1112.5507.(2011-12-23)[2025-02-27] https://arxiv.org/abs/1112.5507v5. |