[1] Huber P J, Ronchetti E M.Robust statistics[M]. New York: John Wiley & Sons, 2009. DOI: 10.1002/9780470434697. [2] Grubbs F E.Procedures for detecting outlying observations in samples[J]. Technometrics, 1969, 11(1):1-21. DOI:10.1080/00401706.1969.10490657. [3] Hawkins D M.Identification of Outliers[M]. London: Chapman and Hall, 1980. [4] Barnett V, Lewis T.Outliers in statistical data[M]. 3rd ed. Chichester: Wiley & Sons, 1994. [5] John G H.Robust decision trees: removing outliers from databases[C]//Proceedings of the First International Conference on KDD. Montréal, Québec, Canada: AAAI Press, 1995: 174-179. DOI:10.5555/3001335.3001364. [6] Aggarwal C C, Yu P S.Outlier detection for high dimensional data[C]//Proceedings of the 2001 ACM SIGMOD international conference on Management of data. Santa Barbara California USA. ACM, 2001:37-46. DOI:10.1145/375663.375668. [7] Taylor J, Tibshirani R J.Statistical learning and selective inference[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(25):7629-7634. DOI:10.1073/pnas.1507583112. [8] Benjamini Y.Simultaneous and selective inference: Current successes and future challenges[J]. Biometrical Journal, 2010, 52(6):708-721. DOI:10.1002/bimj.200900299. [9] Benjamini Y, Bogomolov M.Selective inference on multiple families of hypotheses[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2014, 76(1):297-318. DOI:10.1111/rssb.12028. [10] Tibshirani R J, Taylor J, Lockhart R, et al.Exact post-selection inference for sequential regression procedures[J]. Journal of the American Statistical Association, 2016, 111(514):600-620. DOI:10.1080/01621459.2015.1108848. [11] Tian X Y, Taylor J.Selective inference with a randomized response[J]. The Annals of Statistics, 2018, 46(2):679-710. DOI:10.1214/17-aos1564. [12] Chen S X, Bien J.Valid inference corrected for outlier removal[J]. Journal of Computational and Graphical Statistics, 2020, 29(2):323-334. DOI:10.1080/10618600.2019.1660180. [13] Loftus J R, Taylor J E. Selective inference in regression models with groups of variables[EB/OL].2015: 1511.01478. https://arxiv.org/abs/1511.01478v1. [14] Lee J D, Sun D L, Sun Y K, et al.Exact post-selection inference, with application to the lasso[J]. The Annals of Statistics, 2016, 44(3):907-927. DOI:10.1214/15-aos1371. [15] Behrens W U.A contribution to error estimation with few observations[J]. Journal of Agriculture Scientific Archives of the Royal Prussian State College-Economy, 1929, 68: 807-837. [16] Fisher R A.The fiducial argument in statistical inference[J]. Annals of Eugenics, 1935, 6(4):391-398. DOI:10.1111/j.1469-1809.1935.tb02120.x. [17] Welch B L.The significance of the difference between two means when the population variances are unequal[J]. Biometrika, 1938, 29(3/4):350-362. DOI:10.1093/biomet/29.3-4.350. [18] Cochran W G, Cox G M.Experimental designs[M]. New York: Wiley, 1950. [19] Aspin A A.An examination and further development of a formula arising in the problem of comparing two mean values[J]. Biometrika, 1948, 35(1/2):88. DOI:10.2307/2332631. [20] Lee A F S, Gurland J. Size and power of tests for equality of means of two normal populations with unequal variances[J]. Journal of the American Statistical Association, 1975, 70(352):933-941. DOI:10.1080/01621459.1975.10480326. [21] Jeffreys H.The theory of probability[M]. Oxford, UK: Oxford University Press, 1998. [22] Kim S H, Cohen A S.On the Behrens-Fisher problem: A review[J]. Journal of Educational and Behavioral Statistics, 1998, 23(4):356-377. DOI:10.3102/10769986023004356. [23] Yin Y L, Li B R.Analysis of the Behrens‐Fisher Problem Based on Bayesian Evidence[J]. Journal of Applied Mathematics, 2014, 2014(1): 978691. DOI:10.1155/2014/978691. [24] 仇丽莎, 韦来生. 正态总体均值和误差方差同时的经验Bayes估计[J]. 中国科学院大学学报, 2013, 30(4):454-461. DOI:10.7523/j.issn.2095-6134.2013.04.005. [25] Weerahandi S .Generalized Confidence Intervals[J]. Journal of the American Statistical Association, 1993, 88(423): 899-905. DOI: 10.1080/01621459.1993.10476355. [26] Tsui K W, Weerahandi S.Generalized p-values in significance testing of hypotheses in the presence of nuisance parameters[J]. Journal of the American Statistical Association, 1989, 84(406):602-607. DOI:10. 1080/01621459.1989.10478810. [27] 扈慧敏, 杨荣, 徐兴忠. 单因素方差分析模型中的广义p-值[J]. 中国科学院研究生院学报, 2007, 24(4):408-418. DOI:10.3969/j.issn.1002-1175.2007.04.002. [28] 牟唯嫣, 熊世峰. 混合模型中的广义置信域[J]. 中国科学院研究生院学报, 2008, 25(3):297-304. DOI:10.7523/j.issn.2095-6134.2008.3.002. [29] Xu L W, Wang S G.A new generalized p-value and its upper bound for ANOVA under unequal error variances[J]. Communications in Statistics—Theory and Methods, 2008, 37(7):1002-1010. DOI:10. 1080/03610920701713252. [30] Ananda M M A, Weerahandi S. Two-way ANOVA with unequal cell frequencies and unequal variances[J]. Statistica Sinica, 1997, 7(3):631-646. [31] Mu W Y, Xiong S F.Robust generalized confidence intervals[J]. Communications in Statistics-Simulation and Computation, 2017, 46(8):6049-6060. DOI:10.1080/03610918.2016.1189566. [32] 刘琰, 李仕明, 张三国. 基于符号秩的高维均值检验[J]. 中国科学院大学学报, 2022, 39(5):586-592. DOI: 10.7523/j.ucas.2020.0059. [33] Cook R D.Detection of influential observation in linear regression[J]. Technometrics, 1977, 19(1):15-18. DOI:10.1080/00401706.1977.10489493. [34] Xie M G, Singh K.Confidence distribution, the frequentist distribution estimator of a parameter: A review[J]. International Statistical Review, 2013, 81(1):3-39. DOI:10.1111/insr.12000. [35] Hannig J.On generalized fiducial inference[J]. Statistica Sinica, 2009, 19(2):491-544. DOI:10.1016/j.probengmech.2008.06.005. [36] Hannig J, Iyer H, Patterson P.Fiducial generalized confidence intervals[J]. Journal of the American Statistical Association, 2006, 101(473):254-269. DOI:10.1198/016214505000000736. [37] Xiong S F, Mu W Y.On construction of asymptotically correct confidence intervals[J]. Journal of Statistical Planning and Inference, 2009, 139(4):1394-1404. DOI:10.1016/j.jspi.2008.08.014. [38] Singh P, Saxena K K, Srivastava O P.Power comparisons of solutions to the Behrens-Fisher problem[J]. American Journal of Mathematical and Management Sciences, 2002, 22(3/4):233-250. DOI:10.1080/01966324.2002.10737589 . [39] Chen C, Liu H S, Wu C X, et al.A simple approximation solution for the Behrens-Fisher problem[J]. Communications in Statistics-Simulation and Computation, 2023:1-14. DOI:10.1080/03610918.2023.2280451. [40] Güven G, Acıtaş S, Şamkar H, et al. RobustBF: An R package for robust solution to the Behrens-Fisher problem[J]. The R Journal, 2021, 13(2): 642. DOI: 10.32614/rj-2021-107. [41] Kang G L, Mirzaei S S, Zhang H, et al.Robust Behrens-Fisher Statistic Based on Trimmed Means and Its Usefulness in Analyzing High-Throughput Data[J]. Frontiers in Systems Biology, 2022, 2:877601. DOI:10.3389/fsysb.2022.877601. [42] Shapiro S S, Wilk M B.An analysis of variance test for normality (complete samples)[J]. Biometrika, 1965, 52(3/4):591-611. DOI:10. 1093/biomet/52.3-4.591. [43] Bartlett M S.Properties of sufficiency and statistical tests[J]. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 1937, 160(901):268-282. DOI:10. 1098/rspa.1937.0109. [44] Wang R, Xu W L.An approximate randomization test for the high-dimensional two-sample Behrens-Fisher problem under arbitrary covariances[J]. Biometrika, 2022, 109(4):1117-1132. DOI:10.1093/biomet/asac014. [45] Mu W Y, Xiong S F, Xu X Z.Generalized confidence regions of fixed effects in the two-way ANOVA[J]. Journal of Systems Science and Complexity, 2008, 21(2):276-282. DOI:10.1007/s11424-008-9111-0. [46] Berenguer-Rico V, Wilms I.Heteroscedasticity testing after outlier removal[J]. Econometric Reviews, 2021, 40(1):51-85. DOI:10.1080/07474938.2020.1735749. [47] Mu W Y, Xiong S F.On Huber’s contaminated model[J]. Journal of Complexity, 2023, 77:101745. DOI:10.1016/j.jco.2023.101745. [48] Thériault R, Ben-Shachar M S, Patil I, et al. Check your outliers?! An introduction to identifying statistical outliers in R with easystats[J]. Behavior Research Methods, 2024, 56(4):4162-4172. DOI:10.3758/s13428-024-02356-w. [49] 牟唯嫣, 贾晓芳, 熊世峰. 逆瑞利分布和对数逻辑分布下过程能力指数的区间估计[J]. 中国科学院大学学报(中英文), 2024, 41(6):728-735. |