[1] Hou D Y, Jia X Y, Wang L W, et al.Global soil pollution by toxic metals threatens agriculture and human health[J]. Science, 2025, 388(6744): 316-321. DOI: 10.1126/science.adr5214. [2] Mondal S, Mondal T, Pal P, et al.Bioprotective mechanisms of Enterobacter sp. against arsenic, cadmium, and lead toxicity and its potential role in soil bioremediation[J]. Journal of Environmental Chemical Engineering, 2025, 13(2): 115432. DOI: 10.1016/j.jece.2025.115432. [3] Li H B, Chen X Q, Wang J Y, et al.Antagonistic interactions between arsenic, lead, and cadmium in the mouse gastrointestinal tract and their influences on metal relative bioavailability in contaminated soils[J]. Environmental Science & Technology, 2019, 53(24): 14264-14272. DOI: 10.1021/acs.est.9b03656. [4] Zhang Y L, Fu P F, Li S, et al.Remediation of As, Sb, and Pb co-contaminated mining soils by using Fe/C based solid wastes: Synergistic effects and field applications[J]. Chemical Engineering Journal, 2024, 498: 155476. DOI: 10.1016/j.cej.2024.155476. [5] Fan X L, Wu X, Wang X Z, et al.Eliminating the stabilizer antagonistic effects for efficiently stabilizing Pb and As co-contaminated soil by innovative stepwise steam flash heating[J]. Journal of Hazardous Materials, 2024, 473: 134627. DOI: 10.1016/j.jhazmat.2024.134627. [6] Gankhurel B, Fukushi K, Akehi A, et al.Comparison of chemical speciation of lead, arsenic, and cadmium in contaminated soils from a historical mining site: Implications for different mobilities of heavy metals[J]. ACS Earth and Space Chemistry, 2020, 4(7): 1064-1077. DOI: 10.1021/acsearthspacechem.0c00087. [7] Zeng J Q, Luo X H, Cheng Y Z, et al.Spatial distribution of toxic metal(loid)s at an abandoned zinc smelting site, Southern China[J]. Journal of Hazardous Materials, 2022, 425: 127970. DOI: 10.1016/j.jhazmat.2021.127970. [8] 生态环境部, 国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准: GB 15618—2018[S]. 北京: 中国标准出版社, 2018. [9] Wang H Y, Chen S, Xue R Y, et al.Arsenic ingested early in life is more readily absorbed: Mechanistic insights from gut microbiota, gut metabolites, and intestinal morphology and functions[J]. Environmental Science & Technology, 2023, 57(2): 1017-1027. DOI: 10.1021/acs.est.2c04584. [10] Xu L Q, Polya D A, Li Q, et al.Association of low-level inorganic arsenic exposure from rice with age-standardized mortality risk of cardiovascular disease (CVD) in England and Wales[J]. Science of The Total Environment, 2020, 743: 140534. DOI: 10.1016/j.scitotenv.2020.140534. [11] Khan K M, Chakraborty R, Bundschuh J, et al.Health effects of arsenic exposure in Latin America: An overview of the past eight years of research[J]. Science of The Total Environment, 2020, 710: 136071. DOI: 10.1016/j.scitotenv.2019.136071. [12] 王振洲, 崔岩山, 张震南, 等. 生菜和油菜中砷的生物可给性及其对人体的健康风险评估[J]. 中国科学院大学学报, 2015, 32(6): 735-742. DOI: 10.7523/j.issn.2095-6134.2015.06.003. [13] Marshall A T, Betts S, Kan E C, et al.Association of lead-exposure risk and family income with childhood brain outcomes[J]. Nature Medicine, 2020, 26(1): 91-97. DOI: 10.1038/s41591-019-0713-y. [14] O'Connor D, Hou D Y, Ok Y S, et al. The effects of iniquitous lead exposure on health[J]. Nature Sustainability, 2020, 3(2): 77-79. DOI: 10.1038/s41893-020-0475-z. [15] Xu X Y, Qian Q, Shi Y, et al.Cola beverage reduces risk of lead poisoning from accidental ingestion of contaminated soil particles in rat and swine models[J]. Nature Communications, 2025, 16(1): 755. DOI: 10.1038/s41467-025-56138-9. [16] Lin C Y, Wang B B, Cui X Y, et al.Estimates of soil ingestion in a population of Chinese children[J]. Environmental Health Perspectives, 2017, 125(7): 077002. DOI: 10.1289/EHP930. [17] 张玉康, 瞿福, 阮若涵, 等. 重金属生物可给性体外模拟方法研究进展[J]. 生态毒理学报, 2025, 20(1): 221-237. DOI: 10.7524/AJE.1673-5897.20240808002. [18] Sowers T D, Blackmon M D, Wilkin R T, et al.Lead speciation, bioaccessibility, and sources for a contaminated subset of house dust and soils collected from similar United States residences[J]. Environmental Science & Technology, 2024, 58(21): 9339-9349. DOI: 10.1021/acs.est.4c01594. [19] Du H L, Yin N Y, Cai X L, et al.Lead bioaccessibility in farming and mining soils: The influence of soil properties, types and human gut microbiota[J]. Science of The Total Environment, 2020, 708: 135227. DOI: 10.1016/j.scitotenv.2019.135227. [20] Juhasz A L, Weber J, Smith E, et al.Assessment of four commonly employed in vitro arsenic bioaccessibility assays for predicting in vivo relative arsenic bioavailability in contaminated soils[J]. Environmental Science & Technology, 2009, 43(24): 9487-9494. DOI: 10.1021/es902427y. [21] Xia Q, Peng C, Lamb D, et al.Bioaccessibility of arsenic and cadmium assessed for in vitro bioaccessibility in spiked soils and their interaction during the Unified BARGE Method (UBM) extraction[J]. Chemosphere, 2016, 147: 444-450. DOI: 10.1016/j.chemosphere.2015.12.091. [22] Xia Q, Peng C, Lamb D, et al.Effects of arsenic and cadmium on bioaccessibility of lead in spiked soils assessed by Unified BARGE Method[J]. Chemosphere, 2016, 154: 343-349. DOI: 10.1016/j.chemosphere.2016.03.133. [23] Xia Q, Lamb D, Peng C, et al.Interaction effects of As, Cd and Pb on their respective bioaccessibility with time in co-contaminated soils assessed by the Unified BARGE Method[J]. Environmental Science and Pollution Research, 2017, 24(6): 5585-5594. DOI: 10.1007/s11356-016-8292-7. [24] Ollson C J, Smith E, Juhasz A L.Can in vitro assays account for interactions between inorganic co-contaminants observed during in vivo relative bioavailability assessment?[J]. Environmental Pollution, 2018, 233: 348-355. DOI: 10.1016/j.envpol.2017.10.089. [25] Liang S, Guan D X, Li J, et al.Effect of aging on bioaccessibility of arsenic and lead in soils[J]. Chemosphere, 2016, 151: 94-100. DOI: 10.1016/j.chemosphere.2016.02.070. [26] Yin N Y, Zhang Z N, Cai X L, et al.In vitro method to assess soil arsenic metabolism by human gut microbiota: Arsenic speciation and distribution[J]. Environmental Science & Technology, 2015, 49(17): 10675-10681. DOI: 10.1021/acs.est.5b03046. [27] Tang X Y, Cui Y S, Duan J, et al.Pilot study of temporal variations in lead bioaccessibility and chemical fractionation in some Chinese soils[J]. Journal of Hazardous Materials, 2008, 160(1): 29-36. DOI: 10.1016/j.jhazmat.2008.02.076. [28] Tang X Y, Zhu Y G, Shan X Q, et al.The ageing effect on the bioaccessibility and fractionation of arsenic in soils from China[J]. Chemosphere, 2007, 66(7): 1183-1190. DOI: 10.1016/j.chemosphere.2006.07.096. [29] Ruby M V, Davis A, Schoof R, et al.Estimation of lead and arsenic bioavailability using a physiologically based extraction test[J]. Environmental Science & Technology, 1996, 30(2): 422-430. DOI: 10.1021/es950057z. [30] Yin N Y, Du H L, Zhang Z N, et al. Variability of arsenic bioaccessibility and metabolism in soils by human gut microbiota using different in vitro methods combined with SHIME[J]. Science of The Total Environment, 2016, 566-567: 1670-1677. DOI: 10.1016/j.scitotenv.2016.06.071. [31] Laird B D, Van de Wiele T R, Corriveau M C, et al. Gastrointestinal microbes increase arsenic bioaccessibility of ingested mine tailings using the simulator of the human intestinal microbial ecosystem[J]. Environmental Science & Technology, 2007, 41(15): 5542-5547. DOI: 10.1021/es062410e. [32] Oremland R S, Stolz J F.Arsenic, microbes and contaminated aquifers[J]. Trends in Microbiology, 2005, 13(2): 45-49. DOI: 10.1016/j.tim.2004.12.002. [33] Zhang S X, Deng Z W, Yin X X, et al.Bioaccessibility of lead and cadmium in soils around typical lead-acid power plants and their effect on gut microorganisms[J]. Environmental Geochemistry and Health, 2024, 46(3): 107. DOI: 10.1007/s10653-023-01840-0. [34] Cai M F, McBride M B, Li K M, et al. Bioaccessibility of as and Pb in orchard and urban soils amended with phosphate, Fe oxide and organic matter[J]. Chemosphere, 2017, 173: 153-159. DOI: 10.1016/j.chemosphere.2017.01.049. [35] Xie K T, Xie N G, Liao Z Y, et al.Bioaccessibility of arsenic, lead, and cadmium in contaminated mining/smelting soils: Assessment, modeling, and application for soil environment criteria derivation[J]. Journal of Hazardous Materials, 2023, 443: 130321. DOI: 10.1016/j.jhazmat.2022.130321. [36] Zia M H, Codling E E, Scheckel K G, et al.In vitro and in vivo approaches for the measurement of oral bioavailability of lead (Pb) in contaminated soils: A review[J]. Environmental Pollution, 2011, 159(10): 2320-2327. DOI: 10.1016/j.envpol.2011.04.043. [37] Bolan S, Seshadri B, Grainge I, et al.Gut microbes modulate bioaccessibility of lead in soil[J]. Chemosphere, 2021, 270: 128657. DOI: 10.1016/j.chemosphere.2020.128657. [38] Ruby M V, Schoof R, Brattin W, et al.Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment[J]. Environmental Science & Technology, 1999, 33(21): 3697-3705. DOI: 10.1021/es990479z. [39] Liu H S, Fu S L, Zhang S S, et al.Lead induces structural damage, microbiota dysbiosis and cell apoptosis in the intestine of juvenile bighead carp (Hypophthalmichthys nobilis)[J]. Aquaculture, 2020, 528: 735573. DOI: 10.1016/j.aquaculture.2020.735573. [40] Wang N N, Sheng Z J, Zhou S M, et al.Chronic lead exposure exacerbates hepatic glucolipid metabolism disorder and gut microbiota dysbiosis in high-fat-diet mice[J]. Food and Chemical Toxicology, 2022, 170: 113451. DOI: 10.1016/j.fct.2022.113451. [41] Yin N Y, Chang X H, Xiao P, et al.Role of microbial iron reduction in arsenic metabolism from soil particle size fractions in simulated human gastrointestinal tract[J]. Environment International, 2023, 174: 107911. DOI: 10.1016/j.envint.2023.107911. [42] Müller V, Chavez-Capilla T, Feldmann J, et al.Increasing temperature and flooding enhance arsenic release and biotransformations in Swiss soils[J]. Science of The Total Environment, 2022, 838: 156049. DOI: 10.1016/j.scitotenv.2022.156049. [43] Huang H, Jia Y, Sun G X, et al.Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters[J]. Environmental Science & Technology, 2012, 46(4): 2163-2168. DOI: 10.1021/es203635s. |