[1] Fujiwara K, Pratsinis S E.Single Pd atoms on TiO2 dominate photocatalytic NOx removal[J]. Applied Catalysis B: Environmental, 2018, 226: 127-134. DOI:10.1016/j.apcatb.2017.12.042. [2] Gao F C, Xu Z W, Zhao H B.Flame spray pyrolysis made Pt/TiO2 photocatalysts with ultralow platinum loading and high hydrogen production activity[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6503-6511. DOI:10.1016/j.proci.2020.06.330. [3] Wang N F, Li S Q, Zong Y C, et al.Sintering inhibition of flame-made Pd/CeO2 nanocatalyst for low-temperature methane combustion[J]. Journal of Aerosol Science, 2017, 105: 64-72. DOI:10.1016/j.jaerosci.2016.11.017. [4] Krumeich F, Waser O, Pratsinis S E.Thermal annealing dynamics of carbon-coated LiFePO4 nanoparticles studied by in-situ analysis[J]. Journal of Solid State Chemistry, 2016, 242: 96-102. DOI:10.1016/j.jssc.2016.07.002. [5] Yi E, Temeche E, Laine R M.Superionically conducting β′′-Al2O3 thin films processed using flame synthesized nanopowders[J]. Journal of Materials Chemistry A, 2018, 6(26): 12411-12419. DOI:10.1039/C8TA02907E. [6] Zhang J N, Muldoon V L, Deng S L.Accelerated synthesis of Li(Ni0.8Co0.1Mn0.1)O2 cathode materials using flame-assisted spray pyrolysis and additives[J]. Journal of Power Sources, 2022, 528: 231244. DOI:10.1016/j.jpowsour.2022.231244. [7] Kemmler J A, Pokhrel S, Mädler L, et al.Flame spray pyrolysis for sensing at the nanoscale[J]. Nanotechnology, 2013,24(44):442001. DOI:10.1088/0957-4484/24/44/442001. [8] Estévez M, Cicuéndez M, Crespo J, et al.Large-scale production of superparamagnetic iron oxide nanoparticles by flame spray pyrolysis: In vitro biological evaluation for biomedical applications[J]. Journal of Colloid and Interface Science, 2023, 650(Pt A): 560-572. DOI:10.1016/j.jcis.2023.07.009. [9] Kumar A, Chen H W, Yang S Y.Modeling microexplosion mechanism in droplet combustion: Puffing and droplet breakup[J]. Energy, 2023, 266:126369. DOI:10.1016/j.energy.2022.126369. [10] Califano V, Calabria R, Massoli P.Experimental evaluation of the effect of emulsion stability on micro-explosion phenomena for water-in-oil emulsions[J]. Fuel, 2014, 117: 87-94. DOI:10.1016/j.fuel.2013.08.073. [11] Feng S N, Zhu Z, Lin H F, et al.Combustion and microexplosion characteristics in droplets of kerosene with boron nanoparticles and 1-pentanol[J]. Acta Astronautica, 2025, 232: 364-373. DOI:10.1016/j.actaastro.2025.03.030. [12] Li H P, Pokhrel S, Schowalter M, et al.The gas-phase formation of tin dioxide nanoparticles in single droplet combustion and flame spray pyrolysis[J]. Combustion and Flame, 2020, 215: 389-400. DOI:10.1016/j.combustflame.2020.02.004. [13] Stodt M F B, Groeneveld J D, Mädler L, et al. Microexplosions of multicomponent drops in spray flames[J]. Combustion and Flame, 2022, 240:112043. DOI:10.1016/j.combustflame.2022.112043. [14] Witte A, Mädler L.Single droplet combustion of iron nitrate-based precursor solutions: Investigation of time- and size scales of isolated burning FSP-droplets[J]. Applications in Energy and Combustion Science, 2023, 14:100147. DOI:10.1016/j.jaecs.2023.100147. [15] Li H, Rosebrock C D, Riefler N, et al.Experimental investigation on microexplosion of single isolated burning droplets containing titanium tetraisopropoxide for nanoparticle production[J]. Proceedings of the Combustion Institute, 2017, 36(1): 1011-1018. DOI:10.1016/j.proci.2016.09.017. [16] Stodt M F B, Gonchikzhapov M, Kasper T, et al. Chemistry of iron nitrate-based precursor solutions for spray-flame synthesis[J]. Physical Chemistry Chemical Physics, 2019, 21(44): 24793-24801. DOI:10.1039/C9CP05007H. [17] Meng H, Ren Y H, Cameron F, et al.In-situ temperature and major species measurements of sooting flames based on short-gated spontaneous Raman scattering[J]. Applied Physics B, 2023, 129(2):32. DOI:10.1007/s00340-023-07972-6. [18] Meng H, Huang B D, Ren Y H.Manipulating non-equilibrium by quenching flow in atmospheric-pressure microwave plasmas[J]. Plasma Sources Science and Technology, 2025, 34(4):045001. DOI:10.1088/1361-6595/adc333. [19] Rosebrock C D, Riefler N, Wriedt T, et al.Disruptive burning of precursor/solvent droplets in flame-spray synthesis of nanoparticles[J]. AIChE Journal, 2013, 59(12): 4553-4566. DOI:10.1002/aic.14234. [20] Angel S, Neises J, Dreyer M, et al.Spray-flame synthesis of La(Fe, Co)O3 nano-perovskites from metal nitrates[J]. AIChE Journal, 2020, 66(1):e16748. DOI:10.1002/aic.16748. [21] Strobel R, Pratsinis S E.Effect of solvent composition on oxide morphology during flame spray pyrolysis of metal nitrates[J]. Physical Chemistry Chemical Physics, 2011, 13(20): 9246-9252. DOI:10.1039/c0cp01416h. [22] 吕国卫, 苟小龙. 重力对甲烷射流扩散火焰结构影响的数值模拟[J]. 燃烧科学与技术, 2025, 31(5): 507-516. DOI:10.11715/rskxjs.R202506011. [23] Charest M R J, Groth C P T, Gülder Ö L. A numerical study on the effects of pressure and gravity in laminar ethylene diffusion flames[J]. Combustion and Flame, 2011, 158(10): 1933-1945. DOI:10.1016/j.combustflame.2011.02.022. |