[1] Sevast'Yanov B A, Zubkov A M. Controlled branching processes[J]. Theory Prob Appl, 1974, 19: 14-24.[2] Zubkov A M. Analogies between Galton-Watson processes and φ-branching processes[J]. Theory Prob Appl, 1974, 19: 309-331.[3] Bagley J H. On almost convergence of controlled branching processes[J]. J Appl Prob, 1986, 23: 827-831.[4] Molina M, Gonzalezm, Mota M. Some theoreticalr esults about superadditivec ontrolled Galton-Watsonb ranchingp rocesses[C]//Proc Prague Stoch '98, Union of Czech Mathematicians and Physicists, Prague, 1998, 1:413-418.[5] Bruss F T. A counterpart of the Borel-Cantelli lemma[J]. J Appl Prob, 1980, 17:1094-1101.[6] Holzheimer J. φ-branching processes in a random environment[J]. Zastos Mat, 1984, 18: 351-358.[7] Molina M, Gonzalez M, Del Puerto I. On the class of controlled Branching process with random contolled functions[J]. J Appl Prob, 2002, 39(4): 804-815.[8] Gonzalez M, Molina M, Del PuertoSource I. On the geometric growth in controlled branching processes with random control function[J]. J Appl Prob, 2003, 40(4): 995-1006.[9] Gonzalez M, Molina M, Del Puerto I. On L2-convergence of controlled branching processes with random control function[J]. Bernoulli, 2005, 11(1): 37-46.[10] Yanev N M. Conditions for degeneracy of -branching processes with random [J].Theorey Prob Appl, 1976, 20:421-428.[11] Yanev G P, Yanev N M. Conditions for extinction of controlled branching processes[C]//Mathematics and Education in Mathematics. Bulgarian Akad Nauk, Sofia, 1989: 550-555.[12] Yanev G P, Yanev N M. Extinction of controlled branching processes in random environments[J]. Math Balkanica, 1990, 4: 368-380.[13] Hu C M, Liu Q S. Convergence rates for a branching process in a random environment[J]. (to appear in Markov Processes and Related Fields).[14] Asmussen S. Convergence rate for branching processes[J]. Ann Proba, 1976, 4: 139-146. |