[1] IPCC 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Solomon S, Qin D, Manning M, et al. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
[2] King MD, Kaufman Y J, Tanre D, et al. Remote sensing of tropospheric aerosols from space: Past, present, and future [J]. Bulletin of the American Meteorological Society, 1999, 80: 2229-2259.
[3] Kaufamn Y J, Tanre D, Boucher O. A satellite view of aerosols in the climate system [J]. Nature, 2002, 419: 215-223.
[4] ngstrm A. On the atmospheric transmission of sun radiation and on dust in the air [J]. Geografiska Annaler, 1929, 11: 156-166.
[5] ngstrm A. On the atmospheric transmission of sun radiation II [J]. Geografiska Annaler,1930, 12: 130-159.
[6] Mie G. Beitrage zur optik trüber medien speziell kolloidaler metallsungen [J]. Annalen der Physik, 1908,25: 377- 445.
[7] Waterman P C. Symmetry, unitarity, and geometry in electromagnetic scattering [J]. Physical Review, 1971, D3: 825-839.
[8] Yee S K. Numerical solution of initial boundary value problems involving Maxwells equation in isotropic media [J].IEEE Transactions on Antennas and Propagation, 1966, AP-14: 302-307.
[9] Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves [J]. Journal of Computational Physics, 1994,114:185-200.
[10] van de Hulst H C. Light scattering by small particles [M]. New York: Wiley, 1957.
[11] Dobbins R A, Jizmagian G S. Optical scattering cross sections for polydispersions of dielectric spheres [J]. Journal of the Optical Society of America, 1966, 56:1345-1350.
[12] Tarantola A, Valette B. Generalized nonlinear inverse problems solved using the least squares criterion [J]. Reviews of Geophysics, 1982, 20: 219-232.
[13] Phillips D L. A technique for the numerical solution of certain integral equations of the first kind [J]. Journal of the Association for Computing Machinery, 1962, 9: 84-97.
[14] Twomey S. Comparison of constrained linear inversion and an iterative non-linear algorithm applied to the indirect estimation of particle size distributions [J]. Journal of Computational Physics, 1975, 18:188-200.
[15] Bockmann C. Hybrid regularization method for the ill-posed inversion of multiwave-length lidar data in the retrieval of aerosol size distributions . Applied Optics, 2001, 40: 1329-1342.
[16] Platnick S, King M D, Ackerman S K, et al. The MODIS cloud products: algorithms and examples from Terra [J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41: 459-473.
[17] Wang Y, Fan S, Feng X, et al. Regularized inversion method for retrieval of aerosol particle size distribution function in W1-2 space [J]. Applied Optics, 2006, 45 (28): 7456-7467.
[18] Pahlow M, Müller D, Tesche M, et al. Retrieval of aerosol properties from combined multiwavelength lidar and sunphotometer measurements [J]. Applied Optics, 2006, 45 (28): 7429-7442.
[19] Shifrin K S, Perelman A Y. The determination of the spectrum of particles in a dispersed system from data on its transparency. I. The fundamental equation for the determination of the spectrum of the particles [J]. Optics and Spectroscopy (USSR), 1963, 15: 285-289.
[20] Box M A, McKellar B H. Analytic inversion of multispectral extinction data in the anomalous diffraction approximation [J]. Optics Letters, 1978, 3: 91-93.
[21] Shifrin K S, Perelman A Y, Volgin V M. Calculations of particle-radius distribution density from the integral characteristics of the spectral attenuation coefficient [J]. Optics and Spectroscopy (USSR), 1981, 51: 534-538.
[22] Fymat A L. Analytical inversions in remote sensing of particle size distributions. 1. Multispectral extinctions in the anomalous diffraction approximation [J]. Applied Optics, 1978, 17:1675-1676.
[23] Fymat A L, Mease K D. Reconstructing the size distribution of spherical particles from angular forward scattering data // Fymat A L, Zuev V E. Remote Sensing of the Atmosphere: Inversion Methods and Applications. New York: Elsevier,1978.
[24] Fymat A L, Smith C B. Analytical inversions in remote sensing of particle size distributions. 4. Comparison of Fymat and Box-McKellar solutions in the anomalous diffraction approximation [J]. Applied Optics, 1979, 18:3595-3598.
[25] Box M A, McKellar B H. Relationship between two analytic inversion formulae for multispectral extinction data [J]. Applied Optics, 1979, 18: 3599-3601.
[26] Smith C B. Inversion of the anomalous diffraction approximation for variable complex index of refraction near unity [J]. Applied Optics, 1982, 21: 3363-3366.
[27] Klett D J. Anomalous diffraction model for inversion of multispectral extinction data including absorption effects [J]. Applied Optics, 1984, 23: 4499-4508.
[28] Wang J, Hallett F R. Spherical particle size determination by analytical inversion of the UV-visible-NIR extinction spectrum [J]. Applied Optics, 1996, 35: 193-197.
[29] Franssens G, Mazière M D, Fonteyn D. Determination of the aerosol size distribution by analytic inversion of the extinction spectrum in the complex anomalous diffraction approximation [J]. Applied Optics, 2000, 39: 4214-4236.
[30] Liou K N, TakanoY. Light scattering by nonspherical particles: Remote sensing and climatic implications [J]. Atmospheric Research, 1994, 31:271-298.
[31] Nakajima T, Tanaka M, Yamano M,et al. Aerosol optical characteristics in the yellow sand events observed in May, 1982 at Nagasaki—Part Ⅱ Models . Journal of the Meteorological Society of Japan, 1989, 67: 279-291.
[32] Heintzenberg J. Particle size distributions from scattering measurements of nonspherical particles via Mie-theory [J]. Beitraege zur Physik der Atmosphaere, 1998,51: 91- 99.
[33] Gobbi G P, Barnaba F, Blumthaler M, et al. Observed effects of particles nonsphericity on the retrieval of marine and desert dust aerosol optical depth by lidar [J]. Atmospheric Research, 2002, 61:1- 14. Doi: 10.1016/S0169-8095(01)00104-1.
[34] Dubovik O, Holben B N, Lapyonok T, et al, Nonspherical aerosol retrieval method employing light scattering by spheroids [J]. Geophysical Research Letters, 2002, 29. 10.1029/2001GL014506.
[35] Zhao T X, Laszlo I, Dubovik O, et al. A study of the effect of non-spherical dust particles on the AVHRR aerosol optical thickness retrievals [J]. Geophysical Research Letters, 2003, 30(6): 1317. doi: 10.1029/2002GL016379.
[36] Wenzel K,Von Hoyningen-Huene W, Schienbein S. Effects of nonsphericity on Saharan dust optical properties [J]. Journal of Aerosol Science, 1996, 27(Suppl 1):565-566.
[37] Mishchenko M I, Lacis A A, Carlson B E, et al. Nonsphericity of dust-like tropospheric aerosols: Implications for aerosol remote sensing and climate modeling [J]. Geophysical Research Letters, 1995, 22: 1077-1080.
[38] Asano S, Yamaoto G. Light scattering by a spheroidal particles [J]. Applied Optics, 1975, 14: 29-49.
[39] Shankar R. Principles of quantum mechanics [M]. New York: Plenum, 1994.
|