[1] Ezawa H, Murayama Y. Quantum control and measurement [M].North-Holland, Amsterdam, 1993.
[2] Wiseman H M. Quantum theory of continuous feedback [J]. Phys Rev A, 1994, 49:2133.
[3] Doherty A C, Habib S, Jacobs K, et al. Quantum feedback control and classical control theory [J]. Phys Rev A, 2000, 62:012105-012117.
[4] Ganesan N, Tarn T J. Decoherence control in open quantum systems via classical feedback [J]. Phys Rev A, 2007, 75:032323-032341.
[5] Nielsen M A, Chuang I L. Quantum computation and quantum information [M]. Cambridge University Press, 2000.
[6] Bennett C H, DiVincenzo D P, Fuchs C A, et al. Quantum nonlocality without entanglement [J]. Phys Rev A, 1999, 59(2):1070-1090.
[7] Lloyd S, Slotine J J E. Quantum feedback with weak measurements [J]. Phys Rev A, 2000, 62:012307-012311.
[8] Audretsch J, Diósi L, Konrad T. Evolution of a qubit under the influence of a succession of weak measurements with unitary feedback [J]. Phys Rev A, 2002, 66:022310-022320.
[9] Johansen L M. Weak Measurements with arbitrary probe states [J]. Phys Rev Lett, 2004, 93:120402-120405.
[10] Oreshkov O, Brun T A. Weak measurements are universal [J]. Phys Rev Lett, 2005, 95:110409-110412.
[11] Ruskov R, Korotkov A N, Mize A. Signatures of quantum behavior in single-qubit weak measurements [J]. Phys Rev Let, 2006, 96:200404-200407.
[12] Wang S K, Jin J S, Li X Q. Continuous weak measurement and feedback control of a solid-state charge qubit: A physical unravelling of non-Lindblad master equation [J]. Phys Rev B, 2007, 75:155304-155311.
[13] Vandersypen L M K, Chuang I L. NMR techniques for quantum control and computation [J]. Rev Mod Phys, 2004, 76(4):1037-1069.
[14] Negrevergne C, Somma R, Ortiz G, et al. Liquid-state NMR simulations of quantum many-body problems [J]. Phys Rev A, 2005, 71:032344-032354.
[15] Ye H A. Consolidation and fonctionelle [M]. Hefei: University of science and technology of China Press, 1991.
[16] Walls D F, Milburn G J. Quantum optics [M]. Berlin: Springer, 1994.
|