›› 2011, Vol. 28 ›› Issue (4): 419-423.DOI: 10.7523/j.issn.2095-6134.2011.4.001
• Research Articles • Next Articles
CHEN Hong1, GAO Yu-Bin2, TANG Guo-Ping1
Received:
Revised:
Online:
Supported by:
Supported by National Natural Science Foundation of China(11071247)
Abstract:
First, we reduce the calculation of K2(F2[C4×C4]) to that of the relative K2-group K2(F2C4[t]/(t4),(t)) of the truncated polynomial ring F2C4[t]/(t4). Then we give a minimal generating set of K2(F2[C4×C4]) by subtle calculations of Dennis-Stein symbols. Finally we show that K2(F2[C4×C4])=C34 ⊕ C92.
Key words: K2-group, Dennis-Stein symbols, group ring
CLC Number:
O154.3
CHEN Hong, GAO Yu-Bin, TANG Guo-Ping. Calculation of K2(F2[C4×C4])[J]. , 2011, 28(4): 419-423.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://journal.ucas.ac.cn/EN/10.7523/j.issn.2095-6134.2011.4.001
http://journal.ucas.ac.cn/EN/Y2011/V28/I4/419
[1] Magurn B. Explicit K2 of some finite group rings[J]. J Pure Appl Algebra, 2007, 209: 801-911. [2] Gao Y B, Tang G P. K2 of finite abelian group algebras[J]. J Pure Appl Algebra, 2009, 213:1201-1207. [3] Stienstra J. On K2 and K3 of truncated polynomial rings //Algebraic K-theory (Evanston,1980), Lecture notes in Math 854. Berlin: Springer, 1971. [4] Oliver R. Lower bounds for K2top (Zpπ) and K2(Zπ)[J]. J Algebra, 1985, 94(2): 425-487.