[1] Davis P J. Circulant matrices[M]. John Wiley and Sons, 1979. [2] Stuart J L, Weaver J R. Matrices that commute with a permutations matrix[J]. Linear Algebra and Its Applications, 1991: 255-265. [3] Stallings W. Cryptography and network security: principles and practices[M]. 4th ed. Prentice Hall, 2006: 96-115. [4] Dickson L E. The analytic representation of substitution on a power of a prime number of letters with a discussion of the linear group [C]//Ann of Math,1896—1989,11(1):65-120. [5] Singh R P, Sarma B K, Saikia A. Public key cryptography using permutation P-polynomials over finite fields [EB/OL]. (2009-06-24) [2011-02-12]. http://eprint.iacr.org/2009/208. [6] Lancaster P, Tismenetsky M. The theory of matrices[M]. 2nd ed. Academic Press, INC, 1985. [7] Geller D, Kra I, Popescu S, et al. On circulant matrices-preprint [R/OL]. Stony brook university [2011-02-05].http://www.ams.org/notices/201203/rtx120300368p.pdf. [8] Peter M N, Cheryl E P. Cyclic matrices over finite fields[J]. J London Math Soc,1995,52(2):263-284. [9] Han H Q, Zhang H G. Research on cryptology characteristics[J]. J Wuhan Univ:Nat Sci Ed, 2010, 56(6): 673-677(in Chinese). 韩海清,张焕国. 轮换矩阵的密码学性质[J]. 武汉大学学报:理学版, 2010, 56(6): 673-677. [10] 林东岱. 代数学基础及有限域[M].北京:高等教育出版社, 2006: 46-50. [11] Ding J T, Gower J E, Schmidt D S. Multivariate public key cryptosystems[M]. Springer, 2006:100-104. |