[1] Aiena P. Fredholm and local spectral theory, with applications to multipliers[M]. Dordrecht: Kluwer Academic Publishers, 2004.[2] Lausen K B, Neumann M M. An introduction to local spectral theory[M]. New York: Clarendon Press, 2000.[3] Finch J K. The single valued extension property on a Banach space[J]. Pacific J Math, 1975, 58: 61-69.[4] Harte R E. Invertibility and singularity for bounded linear operators[M]. New York: Dekker, 1988.[5] Harte R E. Fredholm, Weyl and Browder theory[J]. Proc Royal Irish Acad, 1985, 85A(2): 151-176.[6] 江泽坚, 吴智全, 纪友清. 实变函数论[M]. 3版. 北京: 高等教育出版社, 2007.[7] Herrero D A, Taylor T J, Wang Z Y. Variation of the point spectrum under compact perturbations[J]. Operator Theory Advances and Applications, 1988(32): 113-158.[8] Ji Y Q. Quasitriangular+small compact=strongly irreducible[J]. Trans Amer Math Soc, 1999, 351(11): 4657-4673.[9] Herrero D A. Economical compact perturbations, II, Filling in the holes[J]. J Operator Theory, 1988, 19(1): 25-42.[10] Taylor A E. Theorems on ascent, descent, nullity and defect of linear operators[J]. Math Ann, 1966, 163: 18-49.[11] Herrero D A. Approximation of Hilbert space operators:Vol 1[M]. 2nd ed. Harlow: Longman Scientific and Technical, 1989.[12] Cao X H, Guo M Z, Meng B. Semi-Fredholm spectrum and Weyl's theorem for operator matrices[J]. Acta Mathematica Sinica, 2006, 22(1): 169-178(in Chinese).曹小红,郭懋正,孟彬. 算子矩阵的半Fredholm谱及Weyl定理[J]. 数学学报, 2006, 22(1): 169-178. |