[1] Keller O H. Ganze cremona-transformationen monatschr[M]. Math Phys, 1939, 47: 229-306.[2] Bass H, Connell E H, Wright D.The Jacobian conjecture: reduction of degree and formal expansion of the inverse[J]. Bull AMS, 1982, 7: 287-330, and references therein.[3] Essen A V D. Polynomial automophisms and Jacobian conjecture[M]. Progress in Mathematics Series, Basel: Birkhuser Verlag, 2000, and references therein.[4] Wang S S S. A Jacobian criterion for separability[J]. J Alg, 1980, 65: 453-494.[5] Yagzhev A V. On Keller's problem[J]. Siberian Math J, 1980, 21: 747-754.[6] Bondt M D, Essen A V D. A reduction of the Jacobian conjecture to the symmetric case[J]. Proc Amer Math Soc, 2005, 133(8): 2201-2205.[7] Dru kowski L M. An effective approach to Keller's Jacobian conjecture[J]. Math Ann, 1983, 264: 303-313.[8] Gorni G, Zampieri G. On the cubic-linear polynomial mappings[J]. Indagationes Mathematicae, 1997, New Series 8(4): 471-492.[9] Bondt M D. Quasi-translations and couterexamples to the homogeneous dependence problem[J]. Proc Amer Math Soc, 2006, 134(10): 2849-2856.[10] Bondt M D, Essen A V D. The Jacobian conjecture: linear triangularization for homogeneous polynomial maps in dimension three[J]. Journal of Algebra, 2005, 294:294-306.[11] Meisters G, Olech C. Strong nilpotence holds in dimension up to five only[J]. Linear and Multilinear Algebra, 1991, 30: 231-255.[12] Yan D, Tang G P. The linear triangularizability of some Keller maps[J/OL]. Linear Algebra and its Application, 2013[2013-01-10]. http://dx.doi.org/101016/j.laa.2012.12.018.[13] Cheng C C A. Quadratic linear Keller maps[J]. Linear Algebra and Its Application, 2002, 348: 203-207.[14] Cheng C C A. Cubic linear Keller maps[J]. Journal of Pure and Applied Algebra, 2001, 160: 13-19.[15] Cheng C C A. Power linear Keller maps of rank two are linearly triangularizable[J]. Journal of Pure and Applied Algebra, 2005, 195: 127-130.[16] Bondt M D. The strong nilpotency index of a matrix[EB/OL]. arXiv:1203.6615. (2013-02-17)[2013-03-25]. http://arxiv.org/pdf/1203.6615.pdf. |