[1] Capogna L, Garofalo N. Regularity of minimizers of the calculus of variations in Carnot groups via hypoellipticity of systems of Hormander type[J]. J European Math Soc, 2003, 5: 1-40.[2] Shores E. Hypoellipticity for linear degenerate elliptic systems in Carnot groups and applications[R]. Fayetteville:University of Arkansas, arXiv: mathAP/050256, 2005.[3] Wang J, Niu P. Optimal partial regularity for weak solutions of nonlinear sub-elliptic systems in Carnot groups[J]. Nonlinear Analysis, 2010, 72: 4162-4187.[4] Wang J, Liao D. Optimal partial regularity for sub-elliptic systems with sub-quadratic growth in Carnot groups[J]. Nonlinear Analysis, 2012, 75:2499-2519.[5] Zhu M, Bramanti M, Niu P. Interior HW1, p estimates for divergence degenerate elliptic systems in Carnot groups[J]. J Math Anal Appl, 2013, 399: 442-458.[6] Wang L. A geometric approach to the Calderon-Zygmund estimates[J]. Acta Mathematica Sinica, 2003, 19: 381-396.[7] Byun S, Wang L. Elliptic equations with BMO coefficients in Reifenberg domains[J]. Comm Pure and Appl Math, 2004, 57: 1283-1310.[8] Byun S, Wang L. Gradient estimates for elliptic systems in non-smooth domains[J]. Math Ann, 2008, 241: 629-650.[9] Mengesha T, Phuc N C. Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains[J]. J Diff Eqs, 2011, 250: 2485-2507.[10] Folland G B. Subelliptic estimates and function spaces on nilpotent Lie groups[J]. Ark Mat, 1975, 13: 161-207.[11] Bonfiglioli A, Lanconelli E, Uguzzoni F. Stratified Lie groups and potential theory for their sub-Laplacians[M]. Springer Monographs in Mathematics. Berlin:Springer, 2007.[12] Stein E M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[M]. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, Ⅲ. Princeton, NJ: Princeton University Press, 1993.[13] Bramanti M, Brandolini L. Lp-estimates for nonvariational hypoelliptic operators with VMO coefficients[J]. Trans Amer Math Soc, 2000, 352: 781-822.[14] Bramanti M, Brandolini L. Estimates of BMO type for singular integrals on spaces of homogeneous type and applications to hypoelliptic PDES[J]. Revista Matematica Iberoamericana, 2005, 21: 511-556.[15] Coifman R, Weiss G. Analyse harmonique non-commutative sur certains espaces homogènes[M]. Lecture Notes in Mathematics, 242. Springer-Verlag, Berlin-Heidelberg-New York, 1971.[16] Maclas R, Segovia C. A well behaved quasi-distance for spaces of homogeneous type[J]. Trabajos de Matematica, Inst Argentino Mat, 1981, 32: 1-18.[17] Grafakos L. Classical and modern Fourier analysis[M]. Upper Saddle River NJ: Pearson Education Inc/Prentice Hall, 2004. |