[1] Li G J, Cheng X Q. Research status and scientific thinking of big data[J]. Bulletin of Chinese Academy of Sciences, 2012, 27(6):647-657(in Chinese). 李国杰, 程学旗. 大数据研究:未来科技及经济社会发展的重大战略领域:大数据的研究现状与科学思考[J]. 中国科学院院刊, 2012, 27(6):647-657.[2] Shi Z Z. Big data mining in the cloud, intelligent information processing VI[M]. Springer Berlin Heidelberg, 2012: 13-14.[3] Mika S I. Preface to part Ⅲ adaptive big data analytics. procedia computer science[M]. Elsevier B V, 2013: 211.[4] Jeffrey D. MapReduce: a flexible data processing tool[J]. Communications of the ACM, 2010, 53(1): 72-77.[5] Qin X P, Wang H J, Du X Y, et al. Big data analysis: competition and symbiosis of RDBMS and MapReduce[J]. Journal of Software, 2012, 23(1): 32-45(in Chinese). 覃雄派, 王会举, 杜小勇, 等. 大数据分析:RDBMS与MapReduce的竞争与共生[J]. 软件学报, 2012, 23(1): 32-45.[6] Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters[J]. Communications of the ACM, 2008, 51(1): 107-113.[7] Michele T, Stefano Crespi-Reghizzi. Parallel iterative compilation: using MapReduce to speedup machine learning in compilers[C]//The Third International Workshop on MapReduce and its Applications (MAPREDUCE'12). ACM New York, NY, USA, 2012:18-19.[8] Daniel Z, Shawn B, Sven K, et al. Parallelizing XML data-streaming workflows via MapReduce[J]. Journal of Computer and System Sciences, 2010, 76(6):447-463. |